e
~

Sa

“P N
| T1

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

D3.2 Design and implementation of the acoustic processing unit

Author: Sebastian Uziel (IMMS), Thomas Elste (IMMS), Wolfram Kattanek (IMMS)

Contributor (s): Arturo Marquina (SOL), Victoria Portillo (COR), Marcella Scuccimarra
(SEA)

Project Acronym: S4ECoB
Grant Agreement Number: 284628

Issue Date: M30

Deliverable Number: D3.2

Work Package Number: | WP3

Status: Final Version
DISSEMINATION LEVEL
X PU = Public

PP = Restricted to other programme participants (including the EC)

RE = Restricted to a group specified by the consortium (including the EC)

CO = Confidential, only for members of the consortium (including the EC)

Wl
I i

‘fd LI: S D3.2 Design and Implementation of the acoustic
' processing unit
so(l:jo'r‘l?n?)l. I(:Jl? ?amfnhlrfsze ! PrOjeCt Number: 284628
Document History
Version Date Author Description
1 26.03.2012 IMM ToC
2 28.06.2012 IMM Preliminary Version
3 12.03.2014 IMM Draft Version
submitted for QCC
4 24.03.2014 Andrea Cavallaro QCC Review
as representative
of D’Appolonia
project team
(DAP)
) 31.03.2014 IMM Final Version

March 2014

Page 2 of 89

Wl
|| ||

Lilbz% D3.2 Design and Implementation of the acoustic

' . processing unit

soé’o:?nzl. fn? ZmEDNmEGZG ! PrOjeCt Number: 284628
Disclaimer

The information proposed in this document is provided as a generically explanation on the proposed
topic. No guarantee or warranty is given that the information fits for any particular purpose. The user
thereof must assume the sole risk and liability of this report practical implementation. The document
reflects only the author’s views and the whole work is not liable for any empirical use of the information
contained therein.

March 2014 Page 3 of 89

Ll | | .
| | LI]LT] Lli T l D3.2 Design and Implementation of the a.coust|.c
'S4ECoB processing unit
%0 CoNTRoL 0F BUILDINGS Project Number: 284628
CONTENTS
CONTENTScootccrrcesess s s ss s sss e ss s s s s s s E e E e e anE e Rnr s 4
TERMINOLOGY AND ABBREVIATIONSccoeirirennreresesssssesssssssessssssssesssssssssssssssssssssssssssssssssssasases 8
LIST OF FIGUREScoterreersesssesssessssssssssssesssnssssnsaes 9
LIST OF TABLEScceiccrresssessssesssesssessssesssessssesssnsasses 1
EXECUTIVE SUMMARYcovriemrressressssesssessssessssessssessssessssessssessssessssesssnsees 12
1 INTRODUCTION.......coetreerresrsesssessssessssessssessssessssessssessssessssessssessssessssessssesssssssssessssesssssssssssnssssnsnes 13
1.1 Purpose Of this dOCUMENL ... 13
1.2 Structure of the deliVErable ... 13
1.3 Relationship to the project ODJECHVES.........cooiiiiiiicic 13
1.4 Relationship to other deliverables and tasks...........c.cocoorrrriiciceeceree e 14
1.5 Contributions Of PArNErS ... 14
2 APU SYSTEM OVERVIEW.........ovcrmrerreresnssessssessasens 16
3 APU HARDWIAREcooterressnresssnsanes 18
G L - TSP 18
A =141 o 1 o TSR 18
3.3 EXPANSION DOcooeieiiieecc e 20
3.3.1 POWET SUPPIY vttt 20
3.3.2 ASUINEITACEceeeeeeeeeeee ettt 21
3.3.3 Mainboard iNtErfaCecorreieiecee e 22
3.3.4 Other COMPONENLSoueuririririeieieiceee ettt e s 24
3.3.5 Dimensions and MOUNTING........c.ceurrimiiririiiiee e 24
R € TN 111111 PSR 26
341 ASUINEITACE ...t 26
34.2 PrE-PrOCESSING.....euieteisiieiresistietsesiseietse st ee st bbbttt 28
3.4.3 ProCeSSOriNEITACEc.ovirreeieieeee e 29
344 SYNNESIS MESUHS ... 32
3.5 HOUSING ... 32
G T 70T (PSR 33
4 APU SOFTWAREcocirrcrrmncsssssssssssssss s s s sssss s sssnsssssssssnsasans 35
41 SOftWAre arChitECUEovoeeiic et 35

March 2014 Page 4 of 89

| ‘
T L!JLIM%:%: : L!J D3.2 Design and Implementation of the a.cousti.c
S alclol processing unit
%0 SONTROL OF BUILDINGS Project Number: 284628
42 FPGA COMMUNICALIONcoviiiicecicicee st 37
421 FPGA configuration AriVET ... 37
422 FPGA UPIOAA SCHIPL.. .ottt 38
423 GPMC interface driVE ..ot 38
4.3 APU DEMON ..ottt ettt s st ns e e nnnnnis 40
431 Network CONNECHVILYccueuiiiiiiiii e 41
B.3.2 USBGE....ce ittt 41
44 ADATREAUEN ..ottt a et e ettt ns et e e e nnnnnis 41
441 Plug-iniNEITACE ..o vt 42
442 AVAIlADIE PIUGINS ...t 43
AA.3 USAGE...... ettt 43
5 TECHNICAL SYSTEM VALIDATION REPORTccoosmmmmnnrneresmsssesessssssssessssssesessssssssssssssssessanes 45
TR0 N 0110 1o (1o PP 45
5.2 TestSettings @nd rESUIScoiiiiriiic e 45
5.21 APU commuNICAtioN tESt.......cvovoieececcee e 45
5.2.2 Audio sensor network communication test..........c.coererrrrrinirrieee e 45
5.2.3 Time SYNCAIONIZALIONcuveieiiiiriicieire et 48
5.24 Sensor signal propagation delay............c.coerieeiienee e 49
0.2.5 REMOE GCCESSvvveieieiririririeer ettt e s es s 52
5.26 Robust firmware update PrOCESSccrrrurururuririririrrrrrese e o6
5.27 BEMO COMMUNICAIONvveiiieee e 59
5.2.8 APU NEIWOIK 10G-IN ...t 60
5.29 Environmental conditions and power consumMption.............cocoeereeeeeeenneenenesesenenene 60
5.210 LONGAEIMABSE ... 64
9.3 TESECONCIUSIONS ...ttt nenes 65
5.3 RE I e 66
5.3.2 RFL 2. e 66
5.3.3 RS e 66
534 RaMde e e 66
5.3.5 R 2 66
5.3.6 RA2.2... e 66
537 RF 2. e 66

March 2014 Page 5 of 89

|
T L%J‘Tl LiJLll : L!J D3.2 Design and Implementation of the a.cousti.c
processing unit

%0 SONTROL OF BUILDINGS Project Number: 284628

538 RF24...oe e e 66
5.3.9 RF 2 66
530 RE 3 bbb 66
5.3 T RN B 2. e 66
5312 RA B3 66
5343 RAAT e 66
5344 RFA2...oe e e 66
5.345 REA .. e 66
5346 R .o e 66
537 RN G e e 66
5.348 RN D.2..e e 66
5.3.19 RE G 66
5.3.20 RESA ... e 66
6 APUAND OCCUPANCY SENSOR NETWORK SETUP AND MANAGEMENT MANUAL.......... 67
8.1 APU GAIBWAY ...t 67
6.1.1 INSEAHATION ... 67
0.1.2 DEPENUENCIESeeeeeieieieieieie sttt s s 68
B.1.3 USBOE. . et 68
6.1.4 Graphical USEr iNTEITACEc.oveeereeee e 68
B.2 PTPO oo 70
0.3 APU MaNAGEMENT......c.coiiiiiiiets bbb 70
6.3.1 NEIWOTK CONNECHION. ... 70
0.3.2 NEIWOIK SEHINGS.cvvieieiiriiicieiic b 70
6.3.3 Service NaNAINGoceuriiiciei s 71
6.3.4 FPGA configuration UPAate............ccvuriiuiiiniiiciiiccrsce s 72
6.3.5 AdatReader ConfIgUration ... 72
6.3.6 Firmware UPAALecoueurirreeeeee e 72
6.3.7 SOfWAIrE UPAALE ... 73
T CONCLUSIONS.......coococrreerressssesssessssessssesssesssse s s sssansases 74
REFERENCES.........ccoiicrrisrresssessssesssesss s sesss s e sesss s s sesss e s sessssessssesssssssssessssesssssssssssnssssnssesnsnes 75
ANNEX A: EXPANSION BOARD SCHEMATICS.........cocourmmmmrrmnsrressssessssesssessssesssssssssessssssssssssssssssssasens 76
ANNEX B: APU PHYSICAL AND ELECTRICAL INSTALLATION MANUAL..........cccommenmmrenssresssennns 88

March 2014 Page 6 of 89

L1,
T24a2T D3.2 Design and Implementation of the acoustic

I TFTT |
SAECOR processing unit
b LU LY Project Number: 284628
Steps of the installation and COMMISSIONING PrOCESScvovoveerereieiririeeeee e 88
IVOUNEING . 88
INEEITACES ...ttt ettt e e nnnenas 88
FUNCHONAIEEST ...ttt 89

March 2014 Page 7 of 89

Ll
|| |

)
‘T’L'J e:.:a T D3.2 Design and Implementation of the acoustic
IC processing unit
s°é’o'§?R§L o ';manmEszGY Project Number: 284628

TERMINOLOGY AND ABBREVIATIONS

BEMO building energy management system optimizer = overall S4ECoB
system

BMS building management system

BEMO server central component of each BEMO installation (usually 1 BEMO server

per building / site); consists of several software components (e.g. data
base, data fusioning module, GUl and BMS interface, gateway to
occupancy sensor network, internet remote access) running on a
dedicated PC / server or on PC / server which is already part of the

BMS
APU Acoustic Processing Unit
ASU Audio Satellite Unit
FPGA Field Programmable Gate Array
SoC System on Chip
IC Integrated Circuit
GPMC General Purpose Memory Interface
ADAT Alesis Digital Audio Tape
PTP Precision Time Protocol

March 2014 Page 8 of 89

D3.2 Design and Implementation of the acoustic
processing unit

%0 SONTROL OF BUILDINGS Project Number: 284628

LIST OF FIGURES

Figure 1: Relation of D3.2 to previous and successive tasks and deliverablesc.coocvrniiiinnnes 14
Figure 2: Hierarchical, network-oriented view of the overall S4ECOB systemcccocevvvvvnnnnennns 16
Figure 3: Data and control flow in the SAECOB SYSIEMccevriiiiiiirceseee s 17
Figure 4: APU hardware architeClUIe.............cceiiiririiiicee s 18
Figure 5: Picture of the APU mainboard ..o 19
Figure 6: APU mainboard DIOCK SChEME.........c.cuiiiiiiiiccc s 20
Figure 7: APU expansion board power circuitry block diagram ... 21
Figure 8: Expansion Doard diMmenSiONS...........ccrieiririiiiririeei st 25
Figure 9: APU WIthOUE NOUSING........c.cviiiieiiiieiis s 26
Figure 10: FPGA firmware DIOCK diagram ..o 26
Figure 11: ADAT receiver simulation SCreenShot............ccviiiiiince s 27
FIgure 12: ADAT FSM.....e ettt 28
Figure 13: FTT filter SIMUIINK MOGEIcovieiiiiic s 29
Figure 14: Processor interface block diagram............ccoirriiiiiceee s 30
Figure 15: APU NOUSING AraWiNgceeeiiiiieieiiiieieiseeeisiscie et 32
Figure 16: APU SOfIWAIE OVEIVIEW..........c.cuiiiieieiiiiieieisreieis it 36
Figure 17: FPGA configuration cOnNection SCEME.............ccoiuiurriiiirnieirseeee s 37
Figure 18: Processor FPGA communication sequence diagram ..o 39
Figure 19: FPGA communiCation SChEME ... 40
Figure 20: APU network connection state Maching ..o 41
Figure 21: APU plugin interface SITUCIUIE ... 43
Figure 22: APU communication tESt SEIUD ... 45
Figure 23: Audio sensor communication MeasuremMeNt SEIUDcvrerrurrriiieerenieeeiseieeeeseeieienes 46
Figure 24: ASU cycle to cycle jitter measuremMentcooveriirncrees s 47
Figure 25: ASU phase jitler MeasuremMent ... 48
Figure 26: APU Gateway SCreENSNOL ..o 49
Figure 27: Signal propagation measurement SEIUPcvrirrrierreree s 50
Figure 28: Signal propagation time SChEME............cciiiiie s 51
Figure 29: Signal propagation tiMe 1 ... 51
Figure 30: Signal propagation tiMe 2 ... 52

March 2014 Page 9 of 89

l l . u ' L!J

| | LIML: zT: T | D3.2 Design and Implementation of the acoustic

ol 4l ', processing unit
SOEO:PRSOL I;? ZmEDNmEGZG ! PrOjeCt Number: 284628
Figure 31: RemOte @CCESS SCEIME........c.cuiiiiiiiriieierte bbb 52
Figure 32: APU remote aCCeSS SCrEENSNOL...........uuveuriieiiriricieieiri ittt 53
Figure 33: APU DOt CONIGUIALIONcuviiiici s 54
Figure 34: APU rESCUE OGNcuviiiiieiriieiei ettt 95
Figure 35: APU fIIMWEIE COPYc.veviiiiiiiieiei sttt 56
Figure 36: Screenshot of a power loss during flash card format at firmware updatecccccoovvenes 58
Figure 37: Screenshot of a power loss during firmware image extract at firmware update 59
Figure 38: APU power consumption with no ASU cONNECtedooviiiiecririrseeeeeersescseeenn 61
Figure 39: APU power consumption with three ASU connected............oovvveeerrnnnnnsrrrrencnceenns 61
Figure 40: APU power consumption GPMC @CCESScueururururureririririririreeeeeieieisie e seenenas 62
Figure 41: APU in conditioning CaDINEtcciiiiiiiccc s 63
Figure 42: APU gateway graphical USer inferfaCe............c.cvreriencrsee e 69
Figure 43: APU gateway GUI eXpanded VIEW.............coiuruririiirieiiceissieieieesseie st 69
FIQUre 44: TOP-EVEI VIEBW ..o 76
Figure 45: Interface to MaiNDOAdc.coiiii s 77
FIgure 46: ASU INTEITACE ... 78
Figure 47: ClOCK GENETALIONc.cuiviiieeeiriciei bbb 79
FIGUrE 48: FPGA OVEIVIEW ..ot 80
FIGUre 49: FPGA LEDS ...ttt 81
Figure 50: FPGA ASU INEEITACE ... 82
Figure 51: FPGA GPMC INEIACE........c.euieiieieiieccst et 83
Figure 52: FPGA ClOCK INEITACEovuieeiieiie s 84
Figure 53: FPGA power supply and deCOUPIING.......cvurrrururururrririrrririreseeesereeeeis e seenenes 85
FIQUIE 541 POE CIFCUIL.........ceceeiiecieesee bbbt 86
FIQUIE 55: POWET SUDPPIY ...ttt 87
Figure 56: APU MOUNTINGcuiviriiiiiiieieiiiei bbbt 88
Figure 57: ASU interface connectors of the APU ..o 89
Figure 58: LAN interface and power supply connector of the APU...........cccooveerrrennnnerrnececenas 89

March 2014 Page 10 of 89

D3.2 Design and Implementation of the acoustic
processing unit

%0 SONTROL OF BUILDINGS Project Number: 284628

LIST OF TABLES

Table 1: Extension boards VOIAGE FailS ..o 21
Table 2: ASU interface connector pin @SSIgNMENLccviiirrniiiririee s 22
Table 3: Mainboard interface connector X3 pin @SSIgNMENtcccrierniennieesee s 23
Table 4: Mainboard interface connector X6 pin @SSIgNMENLtcccririrniieinieeese s 24
Table 5: ASU interface ADAT CONNECHON SEALESccuvvriiiiiririirce s 28
Table 6: Register dESCrPHION ..ot 31
Table 7: FPGA resource ULIZAtIONoceiiieirieereesee s 32
Table 8: APU houSing GiMENSIONScucuiuiiririiiieiresieieisie bbb 33
Table 9: Costs for the APU PrOtOtYPEc.ovrrrereecccee e 33
Table 10: Estimated costs per APU at larger qUantities............cooeeriinnicnnceeesseee s 34
Table 11: APU SD card partitioning SChEME..........c.cviiiriicireeree s 35
Table 12: APU software used programming [aNQUAGES..........ccrururrriiieirniieirineeieisseeieseseeieeseenes 37
Table 13: FPGA write and read access fUNCHONS ..o 39
Table 14: APU behaviour after POWET 0SS..........coviiiieeerreeee s o7
Table 15: APU coNdition tESE FESUHS ..o 64
Table 16: Test and requUIrEMENLS COVETAGEcueuriiiiririieieireneei st 66
TADIE 172 APU SBIVICES. ...ttt 71

March 2014 Page 11 of 89

D3.2 Design and Implementation of the acoustic
'S4ECoB processing unit
%0 SONTROL OF BUILDINGS Project Number: 284628

EXECUTIVE SUMMARY

This deliverable is associated to T3.2 that intends to develop and implement the Acoustic Processing
Unit (APU) as the main component of the occupancy sensor.

Each S4ECoB occupancy sensor consists of an Acoustic Processing Unit (APU), an energy-efficient but
capable, adaptable and scalable embedded audio processing computer and up to 3 Audio Satellite
Units (ASU) each connected with up to 8 microphones. The APU extracts and processes the audio
streams transmitted by the ASUs in near real time and detects events to discriminate the level of
occupancy in the corresponding room or area.

An overview over the APU architecture and the general information flow in the overall S4ECoB system
solution are discussed within this deliverable.

The following components have been developed and are described in the present document:

* APU hardware platform, consisting of a mainboard, a FPGA-based extension board and the
corresponding FPGA firmware. Housing details and hardware cost aspects are addressed as
well.

* APU software platform, including an embedded operating system, a signal processing
framework, a number of communication and synchronization components (for communication
with ASU’s and BEMO server) and several management functions like secure remote access
and safe remote firmware update.

Furthermore, results of the technical system validation and corresponding tests, which had to be
performed to validate the defined requirements from Deliverable D2.3, are reported in this deliverable. It
can be summarized that the APU fulfills all of the technical requirements necessary for the realization of
the S4ECoB demonstrator installations.

Finally, this deliverable contains the APU and occupancy sensor network installation and commissioning
manual targeted at installation staff and IT personnel working at the demo site facilities.

March 2014 Page 12 of 89

L;’zl: L;l T D3.2 Design and Implementation of the acoustic
sS4 E|C oB processing unit
b LU LY Project Number: 284628

1 INTRODUCTION

1.1 Purpose of this document

The S4ECoB system is aimed at monitoring and processing sounds and noises for an accurate
determination of the types of occupancy and activities inside and outside smart buildings in order to
improve the Building Energy Management (BEM) systems and in consequence to optimize the Energy
efficiency in Buildings (EeB).

The S4ECoB system consists of two main components:

* Occupancy sensors with integrated Acoustic Processing Unit (APU) and up to 3 Audio Satellite
Units (ASU) each connected with up to 8 microphones
* Building Energy Management Optimizer server (BEMO server)

The Acoustic Processing Unit (APU) is an energy-efficient but capable, adaptable and scalable
embedded audio processing computer. The APU extracts and processes the audio streams in near real
time and detects events to discriminate the level of occupancy in the corresponding room or area.

The development of the APU hardware and software is described in this document. Also the results of
the technical validation and test procedures of the APU are described in this document.

1.2 Structure of the deliverable
This document is structured as follows:

* In Section 2 there is an overview of the S4ECoB system and the role of the APU in the overall
system.

* In Section 3 the APU hardware components including the extension board and the FPGA
firmware are explained in detail.

* In Section 4 the APU software platform and its components are described.
* In Section 5 the technical system validation report

* The APU and occupancy sensor network setup and management manual are described in
Section 6.

* The conclusions are given in Section 7.

The deliverable is completed with a list of references and two appendices containing board schematics
and the APU physical and electrical installation manual.

1.3 Relationship to the project objectives

March 2014 Page 13 of 89

Lo

L
T

‘f& LI: T i D3.2 Design and Implementation of the acoustic
' ‘ processing unit
SOEO:PR?)L I;g ZmEDNmEGZG ! PrOjeCt Number: 284628

The APU (Objective 1) is a basic component of the S4ECoB system. It extracts and processes the audio
streams from the ASUs in near real-time, i.e. it detects and classifies acoustic events in order to
discriminate between levels of occupancy in the monitored rooms and areas. The APU is a part of the
occupancy sensor (Objective 2) that will be incorporated in the pilot buildings (Objective 7 from DoW).

1.4 Relationship to other deliverables and tasks

WP2, task 2.2: “BEM system and demo site buildings requirements”, task 2.3: “Communication needs
and acoustic processing unit requirements” and task 2.4: “Acoustic system and architecture
requirements”, have provided all the specifications and requirements in order to develop the APU
hardware and software platform.

WP3, task 3.1: “Acoustic measurements and audio hardware”, was responsible for the development of
the ASU and had therefore a close relationship to the development of the APU in order to realize an
optimized occupancy sensor. On the other side task 3.3: “Sounds processing and management
system”, task 3.4: “Monitoring of occupancy in the Audio Processing Unit” and task 3.5: “Production of
the sound database for system retraining”, need APU hardware and software design details in order to
implement all acoustic processing functionality and system training capabilities. Therefore Deliverable
D3.2 supports most of the other tasks of WP3.

WP4, task 4.1: “Integration of occupancy sensor network with BEMO server”. The APU Gateway on the
BEMO server is responsible for the communication with all the APUs inside the acoustic network.
Implementation details of the communication protocol and the sound data management as described in
Deliverables D4.1 and D3.2 have been inputs for both corresponding tasks.

Additionally, the installation and commissioning manual, as part of this deliverable, will be used during
installation and operation of the S4ECoB system (WP6).

In Figure 1 the relation to previous and successive deliverables and tasks is shown.

[(:T)%)} [(52} @

C 134 @ e @

‘ 531) ‘\# T3.2E)3-2))@[g)J
11 1

"/ IEE ‘ “/ T34 | T35 ‘
. (033) | (D34) | (D35)

Figure 1: Relation of D3.2 to previous and successive tasks and deliverables

1.5 Contributions of Partners

March 2014 Page 14 of 89

D3.2 Design and Implementation of the acoustic
processing unit

b LU LY Project Number: 284628

IMMS had the main responsibility to prepare this document. SOL, SEA and COR were mainly
contributing parts addressing the installation and commissioning process of the APUs.

March 2014 Page 15 of 89

= c%aT D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

2 APU SYSTEM OVERVIEW

The S4ECoB system is hierarchically designed and therefore consists of several components on
different system and network levels (Figure 2). On the top level there’s the BEMO server component
that has only one instance per installation or building respectively. Due to its scalability the S4ECoB
system supports an arbitrary number of APUs on the level of the acoustic or occupancy sensor network
(the number of APUs is only limited by the number of available IPv4 network addresses in the
corresponding subnet). Each APU is connected with up to three ASUs on the level of the audio sensing
network.

EMS Communication
with existing
— 1 BMS
BEMO
""""""""" server
1 Occupancy
______________ 1 l sensor network

- Audio sensing
- network

AsU| [AsU]| [AsU|

Occupancy sensor Occupancy sensor

Figure 2: Hierarchical, network-oriented view of the overall S4ECoB system

In general the APU is an embedded signal processing and communication device. It is optimized for the
processing of audio and acoustic data and for operation in a networked environment. Data processing
and communication is performed continuously and the APUs therefore should operate 24/7 (while being
permanently monitored by the APU Gateway component on the BEMO server). The overall S4ECoB
flow of information is divided into blocks (distributed to several physical S4ECoB components) and
corresponding data and control flow relations between particular blocks (Figure 3).

A more detailed description of the communication and sensing concept is given in the S4ECoB
Deliverable D2.3.

March 2014 Page 16 of 89

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

D3.2 Design and Implementation of the acoustic

processing unit
Project Number: 284628

Audio Satelite Unit (ASU) Acoustic Processing Unit (APU) BEMO Server
ASU 1
e R
O I / /\
= £ » Central Time ASU & APU Demo Site | |
@ lock: lock: i —_ o |
P g L < Base Positions, etc. | Description | |
\ /
o~ 8 \/
-3
[=)
10— E— —
- / [\ /
[/ / [
o= [Occupancy | \‘ | Retraining |
“ B ‘ | Data | ¢
ASU 2 | Models | /,J‘ \ \\
o=] \ \ \ 8
[i 5 ¢ °
- E| | & 2 / NE
[O— § £ Data _g Signal Feature | R eC Metadata Meta + [Database of ‘f/ \
= = < —» > > [[] f
o— S ™ § Clock qE; Preprocessing Extraction Evenlt AE Generation audio data-ﬂ\ sounds ‘\ w’;
- < = a Detection \ \
5] | 3 5
o— a A
D= i < Occupancy Level + Metadata
_— Acoustic
Source ‘—Source Location:
ASU3 Localization Historical
(O
— Data
D] Raw Audio Snippet:
@
I _— 2
| & ¥
0= 8 \ 4
oaks
. BEM System
o=
Figure 3: Data and control flow in the S4ECoB system
March 2014 Page 17 of 89

= c%aT D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

3 APU HARDWARE

3.1 Overview

The APU hardware platform consists of an embedded mainboard extended with an FPGA-based
communication and signal processing extension board (Figure 4). The extension board receives the
serial audio data stream from up to 3 ASUs. The ADAT encoded audio data (8 channels per APU) is
first decoded and afterwards pre-processed in the FPGA. Typical pre-processing steps like e.g. down
sampling and filtering of audio data lead to a reduction of the amount of data that has to be processed in
later stages. Finally, the decoded and pre-processed data is transferred to the main board using a high-
speed parallel communication interface (GPMC).

The main board is based on the commercially available embedded controller board Pandaboard. It was
primarily chosen because of its CPU processing performance, its very good performance to power
consumption ratio and the resulting low system costs in the case of a small number of APU prototypes.
The main board serves as the hardware platform for the embedded operating system and the audio
signal processing framework running on top of that (Section 4). Additionally, it is connected with the
Ethernet-based occupancy sensor network.

Extension board

i - :
: : Sample Clock : : Pa n d a boa rd :
b ; ADAT 1 ! : 1
. -——Jtransceiver L 7
o ro L
[1 | 1
Lot Sample Clock Xilinx Iepmc, OMAP4460 e o
! RS485 ADAT Spartan6 | ' '| ARMCPU + [Lo
o transceiver 2 e .
i : FPGA L Memory L
1 1 1
L i L
L RSA85 [L
1 1
' ——transceiver [1
[1 |
LI} 1 1] 1
P! Clock [' | Power Lo
L Generator | | supply Lo
[1 ! I :

Figure 4: APU hardware architecture

The APU hardware architecture was already introduced in Deliverable D2.3. This document also
contains a detailed discussion of the requirements leading to that particular architecture.

3.2 Mainboard

March 2014 Page 18 of 89

11([l1]
11171

)
?é % T D3.2 Design and Implementation of the acoustic
IC processing unit
s°é’o'£?R§L o ';meNmEGZGY Project Number: 284628

As described in Deliverable D2.3 the Pandaboard ES (Figure 5) was chosen as a base platform for the
APU. This board is a low power, low cost single board computer based on the Texas Instruments
OMAP4460 (Cortex-A9 multicore architecture) SoC.

Figure 5: Picture of the APU mainboard

A block scheme of the mainboard with the used interfaces and components is shown in Figure 6.

Power is delivered to the board by and external wall plug supply, with 5V voltage output and 2A
maximum current.

The board provides an onboard 10/100Mb Ethernet interface which can be used for the occupancy
sensor network interface. The expansion board is connected with the mainboard using the expansions
connectors J3 and J6 (for detailed description see Section 3.3.3) of the mainboard.

The APU software components, Linux operating system device drivers and several userspace
applications are stored on a SD card.

March 2014 Page 19 of 89

z%:t%T D3.2 Design and Implementation of the acoustic
'S4ECo0B processing unit
%0 SONTROL OF BUILDINGS Project Number: 284628
/
DC Inpt Input Powes e Pandaboard
Connedor [«+ Conditioning Power
(P3) Circuitry Companion IC
OMAP 4460
CPU
- Sl e B‘f;‘::;
Conneciors
SDMMVC Card SOMVIMC 1
Ccsget1s) € >|| LPDDR2 035
8Gb/M1GB
-/
RJ-45 Connector +
2¢USB(A) Host Ports
\ = Y,

Figure 6: APU mainboard block scheme

The documentation, schematic and users guide of the Pandaboard are available at [1].

3.3 Expansion board

In Deliverable D2.3 the hardware and software requirements for the embedded acoustic processing unit
and the APU hardware architecture is defined.

The main component of the expansion board is an FPGA, which is responsible for receiving, decoding
and processing of maximum 24 audio channels from the ASUs and exchanging this audio data with the
OMAP processor on the main board using the GPMC interface. In the following sections the
components and interfaces of the expansion board are explained in detail.

3.3.1 Power supply

The APU expansion board is supplied via the main board expansion connectors. In Figure 7 a block
diagram of the power circuitry is shown.

March 2014 Page 20 of 89

' |
‘TJL'J LI: T D3.2 Design and Implementation of the acoustic
' processing unit
%0 SONTROL OF BUILDINGS Project Number: 284628
VCC_10_1V8 : jilcs h
1.8V} — »\/CCIO |
[5V |
Expansion LMZ10501 ;
Connector > 5V | 1.2V VEC_int »\/CCint
LMZ10503
> 5V | 3.3V VEC_10_3V3 »VCCIO]
TPS73626 VCC_aux

—>3.3V] 2.5V »\/CCaux /

VCC 3V3 _ ASU interface &
" Clock Generation

Figure 7: APU expansion board power circuitry block diagram

In Table 1 the voltage rails with the maximum current are shown.

Voltage rail | Voltage [V] max. Current [A] Description
VCC_IO_1V8 1.8 0,5 FPGA Bank 2 10 Voltage
VCC_int 1.2 1 FPGA core voltage
VCC_aux 2.5 0.4 FPGA auxiliary voltage
VCC_IO_3V3 3.3 0,5 FPGA Bank 0,1,3 10 Voltage
Vee 3V3 33 1 Supply for the otht?r components of the
- expansion board

Table 1: Extension boards voltage rails

3.3.2 ASU interface

The signals from APU to ASU and vice versa are transferred using RS485 electrical standard, which
specifies the electrical characteristics of the generator and the receiver. It does not recommend any
protocol, only the physical layer.

Three ASU interfaces have been implemented, each consist of a RS485 Transceiver (SN65HVD37)
with appropriate transient voltage suppressor (TVS) diodes and common mode inductors to protect the
device from transient voltages resulting from electrostatic discharge (ESD), electrical fast transients
(EFT) and lightning. The corresponding schematic diagram is included in the annex of this document.

For each ASU interface one LED is provided below the connector to display the connection status. A
standard RJ45 connector is used, the pin assignment is listed in Table 2.

‘ Pin ‘ Signal ‘ Description ‘

March 2014 Page 21 of 89

D3.2 Design and Implementation of the acoustic
processing unit
Project Number: 284628

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

1 TX+ positive driver output signal
2 TX- negative driver output signal
3 RX+ positive receiver input signal
4 POE_VCC
: POE_VCC POE supply voltage
6 RX- negative driver input signal
7 POE_GND

= POE signal ground
8 POE_GND
S shield cable shield

Table 2: ASU interface connector pin assignment

3.3.3 Mainboard interface

The Pandaboard ES provides two 28-pin, 2,54mm through-hole expansion connectors, J3 and J6. The
APU Expansion board is interfaced through these connectors with the processor mainboard. In Table 3
and Table 4 the pin assignments of the connectors are listed.

J3/X3 Pin | Pandaboard usage | Expansionboard usage Description

1 Panda 1,8V 1,8V 1,8V supply

2 Panda 5V 5V 5V supply

3 GPMC_AD7 GPMC_AD7 GPMC Address/Data Bit 7

4 GPIO 140 DONE Active.—High.sigr?aI indicating
configuration is complete

5 GPMC_AD6 GPMC_AD6 GPMC Address/Data Bit 6

6 GPIO 156 GPMC_Int GPMC Interrupt

7 GPMC_AD5 GPMC_AD5 GPMC Address/Data Bit 5

8 GPIO 155 GPIO 1 GPIO 1, Led V5 gn

9 GPMC_AD4 GPMC_AD4 GPMC Address/Data Bit 4

10 GPIO 138 GPIO 2 GPIO 2, Led V6 gn

11 GPMC_AD3 GPMC_AD3 GPMC Address/Data Bit 3

12 GPIO 136 GPIO 3 GPIO 3, Led V7 rt

13 GPMC_AD2 GPMC_AD2 GPMC Address/Data Bit 2

14 GPIO 139 GPIO 4 GPIO 4, Led V8 ge

15 GPMC_AD1 GPMC_AD1 GPMC Address/Data Bit 1

16 GPIO 137 GPIO 5 GPIO 5

17 GPMC_ADO GPMC_ADO GPMC Address/Data Bit 0

18 GPIO 135 GPIO 6 GPIO 6

19 GPMC_WE GPMC_WE GPMC Write Enable

20 GPIO 134 GPIO 7 GPIO 7

21 GPMC_OE GPMC_OE GPMC Output Enable

March 2014 Page 22 of 89

‘TJLTJLT! : | D3.2 Design and Implementation of the acoustic
processing unit
%0 SONTROL OF BUILDINGS Project Number: 284628
22 GPMC_AD15 GPMC_AD15 GPMC Address/Data Bit 15
23 12C4_SDA 12C_SDA 12C data line
24 12C4_SCL 12C_SCL 12C clock line
25 NC -
26 NC -
27 GND GND Digital Ground
28 GND GND Digital Ground
Table 3: Mainboard interface connector X3 pin assignment
J6/X6 Pin | Pandaboard usage | Expansionboard usage Description
1 -
2 -
3 -
4 ;
5 -
6 -
7 -
8 -
9 GPMC_AD14 GPMC_AD14 GPMC Address/Data Bit 14
10 GPMC_AD13 GPMC_AD13 GPMC Address/Data Bit 13
11 -
12 -
13 -
14 GPIO 121 RDWR B Determines the c.lirection.of tht? D[x:0]
- data bus during Configuration
15 -
16 -
17 GPMC_AD12 GPMC_AD12 GPMC Address/Data Bit 12
18 GPMC_ADS8 GPMC_ADS8 GPMC Address/Data Bit 8
19 GPMC_WAIT GPMC_WAIT GPMC Wait
20 GPMC_AD9 GPMC_AD9 GPMC Address/Data Bit 9
21 GPIO 54 INIT_B
22 GPMC_AD10 GPMC_AD10 GPMC Address/Data Bit 10
23 GPMC_CLK GPMC_CLK GPMC and Configuration clock
24 GPMC_AD11 GPMC_AD11 GPMC Address/Data Bit 11
25 GPMC_CSO0 GPMC_CSO0 GPMC Chip Select 0
26 GPMC_ALE GPMC_ALE GPMC Address Latch Enable
27 GPMC_CS1 GPMC_CS1 GPMC Chip Select 1
)8 GPIO 59 PROG B Active-Low asynchronous full-chip
- FPGA reset
March 2014 Page 23 of 89

Wl
|7| i

Lilds z%: S D3.2 Design and Implementation of the acoustic
- '; processing unit
SOEO:PRSOL I;? ZmEDNmEGZG ! PrOjeCt Number: 284628

Table 4: Mainboard interface connector X6 pin assignment

The communication between FPGA and processor is realized using the General Purpose Memory
Controller (GPMC) of the processor. This interface is also used to load the configuration bit stream into
the FPGA during the startup of the APU.

3.3.4 Other components

An external clock generator circuit (PLL1707) provides a low jitter sample clock (50ps typical) and the FPGA
system clock.

No-volatile data outside the SD card can be stored in an EEPROM on the expansion board, which is
connected to the 12C bus 4 of the processor.

Three LEDs (V1, V2, V3) are located on the bottom side under the ASU interface connectors.
Furthermore five LEDs (V4, V5, V6, V7, V8) are placed on the top side of the board, the LED V4 is
connected with a series resistor to the 5V supply voltage. The other LEDs are connected to the FPGA
and mapped to the GPIOs 155, 138, 136, 139 of the OMAP processor (see Table 3).

3.3.5 Dimensions and mounting

In Figure 8 the dimensions and the position of the mounting holes are shown. The position of the
expansion connectors and the mounting holes fit to the main board positions.

March 2014 Page 24 of 89

Ll |
| Thlhl: zT! | D3.2 Design and Implementation of the acoustic
' processing unit

Project Number: 284628

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

100, 0g
74,95
3,837 (e
[| .
aacaa® oooo? ‘vooe®
[] cooo 0000 YoYoY
]
nI m Y Y m%Y m¥Y
o i gz W = W =--
o IS IS = 1SS
haw Il =% Nl =25 01§ ==2
9 pm
: o
=u od oo
=) |1. 00 DO
= (1= 85 09
3 Il|l| =2~ 00 00
] u 83 69
1 A 99 99 R
] 00 00 n
- BE g8g| | 7
: 00 00
: E H 00 00 g
[00 00 5
1] (L 00 00 |
m ®0® ;... °00"
- (T -
p— []]]]
45,50 o . .I'I
=]
- ({11111 o
({11111 f
#

Figure 8: Expansion board dimensions

The expansion board can be mounted on top of the main board with 10mm spacers (Figure 9).

March 2014

Page 25 of 89

Uil
77111

ééél
I||I

D3.2 Design and Implementation of the acoustic
ECo processing unit
S%W:’& o 'SU.ED".:GZ“ Project Number: 284628

Figure 9: APU without housing

3.4 FPGA firmware

The FPGA firmware consists of three main components, namely the ASU interface, the pre-processing
block and the processor interface. In Figure 10 the main components of the FPGA firmware are shown.

) e ™
ASU interface Preprocessing Processor interface
ASU1 - R —
———= | ADAT Receiver IRQ
ADAT port monitor | |\
ASU2 h GPMC
—— | ADAT Receiver > Filter Data Fifos I
v

ADAT port monitor /

ASU3
ADAT port monitor

\ S

Figure 10: FPGA firmware block diagram

In the following sections the components are described in detail.

3.41 ASU interface

Up to three ASUs can be connected to one APU. Subcomponents of the ASU interface are three ADAT
receivers and ADAT port monitors. One ADAT receiver decodes a serial audio data stream received

March 2014 Page 26 of 89

Ll
| TT%"T’ il D3.2 Design and Implementation of the acoustic
processing unit

soé’o:?nzl. 219 ZmEDNmEGZG ! PrOjeCt Number: 284628

from an ASU and outputs parallel eight audio channels with 24bit data width. The ADAT port monitor
detects if an ASU is connected to the corresponding APU interface or if an error in the communication
occurs.

3.41.1 ADAT receiver

The ADAT receiver decodes the serial audio stream acquired by the ASU. The structure of the ADAT
protocol is explained in Deliverable D2.3 (Section 3.1.2).

The ADAT receiver was developed using the hardware description language VHDL. The design was
verified using Cadence Incisive simulator. A self-checking testbench with random stimulus generation
was created to check several cases. Figure 11 shows a screenshot of the simulation output.

- — .
2 Waveform 1- SimVision — - [E=RE

Eile Edit View Explore Format Simulation Windows Help cadence
[BaBs[o[D x| BB 0-E ¢+ " REREHEEEE]MY

Search Names: | Signalv M i ¢ Search Times: Valuev |~]

P Timep~] = [24,260,204 S s~ .2 - @ = || [~ 11 | D 3 = | @] ERO waszasrt,isnev2 Time: 8 [0°33,554.432,000 G\ ¥ %

% O] @ Baseline v=4,356,338,543f3
£F| Cursor-Baseline v = 19,903, 866,412fs

Timed = 24,260,204 ,355(s

Cursarv

1 object selected

Figure 11: ADAT receiver simulation screenshot

3.4.1.2 ADAT Port Monitor

The port monitor detects the state of the corresponding ASU interface ADAT input. In Table 5 the
different states are listed.

State Value Description
Init 0 Initial State, ASU Interface disabled
Enable 1 ASU interface enabled

Frame was decoded successfully, audio data

Frame valid |2 .
valid

March 2014 Page 27 of 89

Li’zl: z%l T T D3.2 Design and Implementation of the acoustic
' processing unit

SOUNDS FOR ENERGY Project Number: 284628

CONTROL OF BUILDINGS

No signal transition detected on the input,

Edge error |3 the ASU is disconnected

Signal transition occurs on the input, but no

Frame error | 4 valid frames could be decoded

Table 5: ASU interface ADAT connection states

The state values of the three port are accessible in the ADAT status register (see register description in
Table 6).

Figure 12 shows the state diagram of the ADAT port monitor.

[ladat_en]
Init [ladat_en], enable
* 4
[adat_en] N
K - 3
[frame_error]
[ladat_en] [frame_sync_def]
[ladat _£n] 3
[frame_error | A ‘ A
. [frame_error] frame_valid |1
2 2
A :
[edge_error] [frame_sync_def-
!’ [adat_edge]

2 _fédge_error [edge_error]
[edge_error]

J

Figure 12: ADAT FSM

The port LED under the ADAT connector on the expansion board of each interface displays if a valid
frame was decoded.

3.4.2 Pre-processing

The pre-processing algorithms were developed using Xilinx System Generator with Simulink® and
MATLAB®. As described in Deliverable D2.4 (Section 3.2) a signal pre-filtering and microphone

March 2014 Page 28 of 89

W]l
I i

Lihl: z%! S D3.2 Design and Implementation of the acoustic
- '; "R processing unit
b LU LY Project Number: 284628

calibration are algorithms that can be implemented in the FPGA. For these requirements a filtering in the
frequency domain with configurable filter functions is implemented.

The filtering in the frequency domain is implemented using FFT convolution with the overlap-add
method. The audio signal is converted from the time in the frequency domain using a Fast Fourier
Transformation (512 point FFT, Radix 2) algorithm. Then, the data values are multiplied with the
frequency response of the filter and transformed back to the time domain using an inverse FFT. The
overlap-add method is used to enable the filtering with the FFT convolution of a very long audio signal.
In this method the input signal is split into non overlapping segments and padded with zeros, and after
that filtered as described above. The output signal is calculated by adding the overlapping segments [2].

Figure 13: FTT filter Simulink model

In Figure 13 the Simulink model of the filter block is shown. All 24 audio channels were buffered,
sequentially processed and afterwards transferred to the processor interface.

3.4.3 Processor interface

The FPGA is connected to the General Purpose Memory Controller (GPMC) of the OMAP processor.
The 16 bit synchronous address / data — multiplexed mode of the GPMC is used. It features
synchronous read and write as well as burst read access to the FPGA. The audio data has a resolution
of 24 bit. The GPMC interface supports data transfers which are a multiple of 16 bit, therefore one audio
sample has to be split in two 16 bit values.

For each of the 24 audio channels one 16 bit width and 1023 word depth FIFO is implemented to store
audio data and enable a buffered block transfer to the processor. Several control and status registers
(see Table 6 for detailed description) have been implemented.

To synchronize FPGA data capture and the transfer to the processor an interrupt line is used. An
interrupt is generated if the status of one ASU interfaces changes or if the audio data FIFOs are half full

March 2014 Page 29 of 89

uuo. y '
|| D5

I T | I
SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

D3.2 Design and Implementation of the acoustic

processing unit
Project Number: 284628

and a transfer to the processor can be started. The interrupt sources can be masked with the interrupt
mask register and the source of the interrupt can be read out from the interrupt status register (see

Table 6 for details).

In Figure 14 the structure of the processor interface is shown.

24 FIFOs
24 audio channels) “—>| GPMC GPMC
interface |€«———
control & logic
status signals .
Register |=>
: IRQ
Interrupt logic >
Figure 14: Processor interface block diagram
In Table 6 the implemented registers are described.
‘ Register ‘ Address ‘ Bit Type Description
int_mask 0x0000 rw Interrupt mask register
fifo_int_en 0 Fifo interrupt enable
adat_stat_en 1 ADAT status interrupt enable
rec_en 0x0001 rw Record enable register
ASU interface 1 receiver enable
ASU interface 2 receiver enable
ASU interface 3 receiver enable
clk_en 0x0002 rw Clock enable register
ASU Interface 1 sample clock enable
ASU interface 2 sample clock enable
ASU interface 3 sample clock enable
adat_stat 0x0003 r ADAT status register
3:0 ASU interface 1 ADAT status value
7:4 ASU interface 2 ADAT status value
11:8 ASU interface 3 ADAT status value

March 2014

Page 30 of 89

i
‘T’LIJLIJI | D3.2 Design and Implementation of the acoustic
processing unit
Project Number: 284628

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

int_stat 0x004 r Interrupt status register
0 Fifo interrupt
1 ASU interface 1 ADAT status interrupt
2 ASU interface 2 ADAT status interrupt
3 ASU interface 3 ADAT status interrupt
dev_dnal 0x0009 r
dev_dna2 0x000A r
dev_dna3 0x000B r
dev_dna4d 0x000C r
ver_dm 0x000D r
ver_y 0xO00E r
ver_t 0x000F r
audio_ch1 0x0010 - 0x0200 r Audio channel 1 data register
audio_ch2 0x0210 - 0x0400 r Audio channel 2 data register
audio_ch3 0x0410 - 0x0600 r Audio channel 3 data register
audio_ch4 0x0610 - 0x0800 r Audio channel 4 data register
audio_ch5 0x0810 - 0x0A00 r Audio channel 5 data register
audio_ché6 0x0A10 - 0x0C00 r Audio channel 6 data register
audio_ch7 0x0C10 - 0x0EQO r Audio channel 7 data register
audio_ch8 O0xOE10 - 0x1000 r Audio channel 8 data register
audio_ch9 0x1010 - 0x1200 r Audio channel 9 data register
audio_ch10 0x1210 - 0x1400 r Audio channel 10 data register
audio_ch11 0x1410 - 0x1600 r Audio channel 11 data register
audio_ch12 0x1610 - 0x1800 r Audio channel 12 data register
audio_ch13 0x1810 - 0x1A00 r Audio channel 13 data register
audio_ch14 0x1A10 - 0x1C00 r Audio channel 14 data register
audio_ch15 0x1C10 - 0x1EOO r Audio channel 15 data register
audio_ch16 Ox1E10 - 0x2000 r Audio channel 16 data register
audio_ch17 0x2010 - 0x2200 r Audio channel 17 data register
audio_ch18 0x2210 - 0x2400 r Audio channel 18 data register
audio_ch19 0x2410 - 0x2600 r Audio channel 19 data register
audio_ch20 0x2610 - 0x2800 r Audio channel 20 data register
audio_ch21 0x2810 - 0x2A00 r Audio channel 21 data register
audio_ch22 0x2A10 - 0x2C00 r Audio channel 22 data register
audio_ch23 0x2C10 - 0x2E00 r Audio channel 23 data register
audio_ch24 0x2E10 - 0x3000 r Audio channel 24 data register
Table 6: Register description
March 2014 Page 31 of 89

=) t%T D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

3.4.4 Synthesis results

The design was synthesized, placed and routed using Xilinx ISE software. In Table 7 the used FPGA
resources are listed:

Ressource Used Available Utilization
Slices 3048 6822 44%
DSP 48A 36 58 62%
Block RAM 114 116 98%

Table 7: FPGA resource utilization

As shown in Table 7 nearly 100% of the available FPGA block RAM is used. This is due to the fact that
the audio data has to be buffered for the pre-processing and the transfer to processor.

3.5 Housing

A Rittal polycarbonate housing (PK9517.100) with IP66 protection class and a transparent cover plate
was selected for the APU. In Figure 15 a drawing and in Table 8 the dimension of the APU housing is
shown.

. B1 T3
B2 N T2
0
. To)
: Q
| % ! m% P
@ | "4 |
i }
|
| QN e l[____________ S V| ™
I| I i Il | T -
i ~—
| Q
® | ey
\ @ | > — !
B4 T4
B5 T1
B3 _

Figure 15: APU housing drawing

March 2014 Page 32 of 89

T
|

Ll 1l&
TL:J LI: | D3.2 Design and Implementation of the acoustic
' processing unit
so(l:jo'r‘l?n?)l. I(:Jl? §UIEDNIP:EGZGY PrOjeCt Number: 284628

Dimension |Value mm | Description
B1 182 Housing width
B2 175 Internal housing width
B3 167 Wall fastening distance outside sealing
B4 120 Wall fastening distance inside the housing
B5 152 Usable width
H1 182 Housing height
H2 173 Internal housing height
H3 165 Wall fastening distance outside sealing
H4 120 Wall fastening distance inside the housing
H5 128 Usable height
T1 90 Complete housing depth
T2 63 Usable depth without cover plate
T3 71 Housing depth without cover plate
T4 75 Usable depth

Table 8: APU housing dimensions

The ASU interface connectors are mounted on the expansion board and can be screwed on the APU
housing. A RJ45 feed through receptacle, Neutrik NES8FDP is mounted on the housing and connected
with a 0.25m catbe patch with the Ethernet port of the main board. A panel mount DC input jack 2.5 x
5.5 mm is connected to the DC input of the main board. The APU with housing has a weight of 708g.

The external interfaces are described in the commissioning manual (Annex B).

3.6 Costs
The costs per APU prototype are listed in Table 9.

Part Price in a lot of 10
Mainboard 150 €
Expansion board 250 €
Initial production costs (2 820 €) 82¢€
housing, power supply 40 €
total 522 €

Table 9: Costs for the APU prototype

The overall costs for the APU prototype could be massively decreased due to the fact of the well-known
scaling effect when producing larger quantities of electronic devices. Here, we refer to information from
a manufacturer of electronic boards and components as a reference. Estimations were given in the
context of another R&D project [3] dealing with a device comparable with the APU main board (we
assume that this alternative main board could be potentially used in the future due to APU SW
optimizations and resulting reduced performance requirements). Another option would be a new

March 2014 Page 33 of 89

Uuo. | l&
|| oS

| T I
SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

D3.2 Design and Implementation of the acoustic
processing unit

Project Number: 284628

designed custom board using e.g. a recently presented Xilinx Zyng SoC (containing both a
microprocessor and a FPGA) [4]. An estimated calculation based on these options is listed in Table 10.

Cost-optimized APU mainboard Zyng-based custom board
Quantity 10 1000 10 1000
Mainboard 100 € 25 €
- 500 € 120 €
Expansion board 250 € 60 €
Housing 40 € 20€ 40 € 20€
total 390 € 105 € 540 € 140 €

March 2014

Table 10: Estimated costs per APU at larger quantities

Page 34 of 89

e t%T D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

4 APU SOFTWARE

4.1 Software architecture

The software stack of the APU is composed of two boot loaders, an embedded Linux operating system,
device drivers and several user-space applications. The complete software stack is stored on a SD flash
card. The partitioning scheme of this flash card is listed in Table 11.

Partition Content
1 First and second stage boot loader, boot loader configuration.
2 Root file system for rescue mode.
3 Root file system.

Table 11: APU SD card partitioning scheme

The basic root file system (based on the Angstrdm distribution for embedded devices) is created using
the OpenEmbedded build framework [5]. By means of a customized configuration several additional
libraries and programs necessary for APU operation are added automatically during the build process of
the root file system by OpenEmbedded. This includes for example the Qt framework, the protobuf library
for network communication, the Julius continuous speech recognition decoder software, the precision
time protocol daemon, the watchdog daemon and several other utilities.

March 2014 Page 35 of 89

: i
TL:J Lll T | D3.2 Design and Implementation of the acoustic
' processing unit
%0 SONTROL OF BUILDINGS Project Number: 284628
) APU
FPGA FPGA Cng?guratmn (.
Config|= L Upload Script]
Driver
~—
(ADAT Reader] D-Bus
S D-Bus Interf - N
Audio (us 1nte ace] APU Daemon
udi
D-Bus Adaptor
SRMC _)’Data (Plugin J I E— [J
river
Plugin] (Protocol Engine]
— \ Y,
() A
protobuf based protocol (TLS/SSL/VPN opt.) y
Network A
BEMO Y

[Protocol Engine]

APU Gatewayj

Figure 16: APU software overview

To this root file system several APU specific software components are added. Figure 16 shows an
overview about these components responsible for connecting to the occupancy detection network, for
audio data acquisition, processing and transmission of sensor data results.

The first part of the APU software stack has to take care of the FPGA configuration process. An upload
script transfers the bitstream configuration data using a specialized device driver into the FPGA.

The main part of the software stack is responsible for audio data processing. Incoming ADAT audio
streams are captured and decoded by the FPGA and transferred to the OMAP CPU using its General

March 2014 Page 36 of 89

W]l
I i

Lihl: z%! S D3.2 Design and Implementation of the acoustic
- '; "R processing unit
b LU LY Project Number: 284628

Purpose Memory Controller (GPMC) in conjunction with a Linux device driver. Reception and
processing of the data is done by the AdatReader application. Results (for example occupancy levels)
of the audio processing algorithms are transferred to the APU Daemon, which is responsible for the
integration of the APU into the occupancy sensor network and communicates with the APU Gateway
running on the BEMO server.

The APU specific part of the software stack amounts to approximately 4800 lines of code, with the
distribution among programming languages as shown in Table 12 (generated by the tool SLOCCount).

Totals grouped by language (dominant language first):
cpp 3018 (62.16%)
ansi 1782 (36.70%)

sh 55 (1.13%)

Table 12: APU software used programming languages

4.2 FPGA communication

421 FPGA configuration driver

This device driver is responsible for enabling the configuration upload to the FPGA. To allow dynamic
configuration changes and also to ensure the update capability of APUs installed at the demo sites this
configuration method was chosen in favor of configuring the FPGA statically by EEPROM or Flash
memory.

Processor, Spartan-6
Microcontroller FPGA
8,16
DATA[15:8]] D[15:8]
DATA[7:0] / D[7:0]
SELECT CSI B
READ/WRITE ~{ RDWR_B
CLOCK|——| CCLK

Figure 17: FPGA configuration connection scheme

Using this driver, bitfile data is transmitted over the GPMC interface of the OMAP4 CPU in combination
with the x16 SelectMAP parallel upload mode of the Spartan6 FPGA. Figure 17 (from [6]) shows the pin
configuration used in this mode. For data 0-15, chip select and clock signals the corresponding GPMC
lines of the CPU are used. The RDWR signal is generated using an extra GPIO.

The parallel SelectMAP interface allows a very fast configuration process. As the FPGA configuration is
volatile and lost after an APU power cycle, this helps to speed up the APU’s boot process as the
configuration process has to be carried out before audio data reception is possible.

March 2014 Page 37 of 89

W]l
I i

Lihl: z%! S D3.2 Design and Implementation of the acoustic
- '; "R processing unit
b LU LY Project Number: 284628

This driver was implemented using code from the Armadeus Project [7], which already provides bitfile
handling and upload logic so only adding the GPMC back end for OMAP CPUs was necessary.

4.2.2 FPGA upload script

FPGA bitfile upload is carried out using the script /opt/s4ecob/bin/fpgaconf.sh (on the APU root file
system) which uses the character device interface provided by the configuration driver (see previous
section). The script can be executed manually with the bitfile which should be uploaded as first
parameter. Or the corresponding systemd service (Section 6.3.3) can be used which will always upload
the file /opt/s4ecob/res/s4eeb_top.bin.

4.2.3 GPMC interface driver

Low level data transfer between FPGA and CPU is handled on the CPU side using a Linux driver
module. The driver module configures the GPMC interface of the OMAP CPU for synchronous burst
mode transfer. This allows reading up to 16 double words of data in one transfer cycle thus greatly
increasing the data rate. Using this setting the driver can access the register interface implemented in
the FPGA via 10 memory operations. To improve performance and offload CPU the audio data transfer
is accelerated utilizing the CPU’'s DMA controller for (I0) memory to memory transactions. Only
configuration and status registers of the FPGA are read or written with DMA controller support.

To synchronize FPGA data capture and the drivers data transfer an interrupt line is used.

| Driver I | FPGA I

clearPendinglirgs()
enablelrgs()
enableCIlk{)
enableCapture()

loop }

irg{)

new DMA Qperation

readDataBlock(}

hY
dmaFinished(]

disableCapture()
disableClk(}
disablelrgs(}

March 2014 Page 38 of 89

I
I

Wi
| TTCJ LI: S D3.2 Design and Implementation of the acoustic
: ,' ~ processing unit
SOEO:PR?)L I;g ZmEDNmEGZG ! PrOjeCt Number: 284628

Figure 18: Processor FPGA communication sequence diagram

Figure 18 shows a sequence diagram of audio data capture operation between driver and FPGA.
Starting with register accesses from the driver to the FPGA to setup interrupt, clock and record flags, the
driver triggers the start of capture operation. After that, if the FPGA has gathered enough data in its
internal FIFO, it sends out an interrupt request to the CPU. Following this interrupt the driver starts a
new DMA operation which transfers one block of audio data from the FPGAs FIFO into the audio buffer
memory of the driver. This is repeated for every block of audio data. If the data capture process is to be
canceled the driver disables capture, clock and interrupt flags in the corresponding FPGA registers.

The userspace interface of the driver is realized using a Linux character device. After opening the
device file /dev/fpga_gpmc a userspace program may use ioctl, read, write and mmap system calls to
communicate with the driver.

Four different ioctl-calls are supported, listed in Table 13. With these single FPGA register access and
controlling the DMA operation is possible.

10CTL Function
FPGA _GPMC_REG_READ Reads a single FPGA-Register
FPGA_GPMC_REG_WRITE Writes a single FPGA-Register
FPGA_GPMC_START _DMA Starts DMA data transfer from FPGA-Fifo
FPGA_GPMC_STOP_DMA Stops DMA data transfer

Table 13: FPGA write and read access functions

Read and write calls provide a way of synchronizing DMA data transfer and microphone array events
detected by the FPGA to the calling user space application. Three different operations are possible:

* Blocking read with the size of “struct fgpa_gpmc_bufstat”. This is synchronized to DMA events
and will unblock if a DMA transfer by the driver was completed and new audio data is available
with status information of the audio buffer.

* Blocking read with the size of “size of (uint16_t)". This is synchronized to events detected by the
FPGA (like adding or removing an ASU) and will unblock if such an event was detected
returning the new event status.

* Write calls with the size of “struct fgpa_gpmc_bufstat”. These will tell the driver when the
userspace program has finished processing an audio buffer.

The last operation supported by the driver is the mmap system call. This maps the drivers audio buffer
memory into the calling programs process memory allowing direct read access. This avoids
unnecessary copy operations of audio data saving memory bandwidth of the CPU. As drawback to this
method the user space program has to synchronize its operation on the buffer to the driver using
additional read and write calls as mentioned above.

March 2014 Page 39 of 89

Wl
|| ||

U
Llh%sz%! D3.2 Design and Implementation of the acoustic
processing unit
soé’o:?nzl. fn? ZmEDNmEGZG ! PrOjeCt Number: 284628
Program I Driver I

open{"/dev/fpga_gpmc")

=TT

ey
loop
read({sizeof{struct fpga_gpmc_bufstat))
s
Blocked until next DMA
operation is finished
g e

P process_audio_buffer(buffer[x])

write(sizeof(struct fpga_gpmc_bufstat)) T]

o mmm e
ioCti{FPGA GPMC STOP DMA) ED
munmap(buffer) N

1

|‘close() N

Figure 19: FPGA communication scheme

Figure 19 shows a typical use of the driver by a user space program: First the program opens the
character device of the driver and maps the audio buffer memory into its address space. After that it
may start to DMA transfer from FPGA with an ioctl call. In a processing loop the program can than read
the audio buffer status from the driver, process received audio data from the previously memory
mapped audio buffer and after that has to write the current buffer status back. If the program exits its
processing loop it has to stop DMA transfer with an ioctl, unmap buffer memory and at last close the
character device file.

4.3 APU Daemon

The APU Daemon is responsible for the integration of the individual APUs into the occupancy sensor
network. It registers the APU with the BEMO server respectively the APU Gateway. On the APU side,
the Daemon provides a Dbus interface for other software components generating sensor data which has
to be transmitted.

March 2014 Page 40 of 89

Wl
I i

‘f& LI: S D3.2 Design and Implementation of the acoustic
,' ~ processing unit
SOEO:PR?)L I;g ZmEDNmEGZG ! PrOjeCt Number: 284628

4.3.1 Network connectivity

WAITING) cohhectioh
FOR CONNECTION g¢—unsuccessfull

nho life
sigh received 00 sign
received
life sign
sent

WAITING FOR '
LIFE SIGN

Figure 20: APU network connection state machine

Figure 20 shows a state machine of the APU Daemons network connection functionality. After startup
the daemon tries to establish a connection to the APU Gateway (IP address of the BEMO server has to
be supplied as a command line parameter, see next section). This connection is SSL encrypted by
default, which can be disabled by command line parameter. If the connection attempt was successful
the Daemon enters the CONNECTED state and regularly sends a life sign message to the APU
Gateway to ensure the connection still exists and is active. If there is no reply to the life sign message
from the Gateway within a timeout, the Daemon closes the connection and enters UNCONNECTED
state again.

4.3.2 Usage
The APU Daemons binary can take several command line parameters, listed below:

* help: Display the parameter list with short explanations.

* host: Specifies the BEMO servers |P address and port (for example: --
host=192.168.0.10:6789).

* logfile: Enables logging to a file in addition to standard output.

* loglevel: Sets the level for logging messages from 0 (all log messages) to 5 (no messages). The
level names in detail from 0 to 5 are: trace, debug, info, warn, error and fatal.

* ssl: Enables or disables (options: on or off) SSL encryption of the network traffic between APU
Gateway and APU Daemon. Daemon and Gateway have to use the same setting of course.
Default setting is "on".

The Daemon is usually started automatically at APU boot up through systemd. Network settings (IP
address of the BEMO server, efc.) are taken from the APU’s network configuration stored in EEPROM
(Section 6.3.2). Starting and stopping the Daemon should be accomplished using systemd’s control
program (Section 6.3.3).

4.4 ADATReader

March 2014 Page 41 of 89

N
LI’L': c%: T T D3.2 Design and Implementation of the acoustic
' processing unit

Project Number: 284628

|
A

S4ECoB

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

The AdatReader provides a framework for the processing of audio data captured by the ASU units
connected to the APU. It uses the GPMC device drivers character interface (Section 4.2.3) to get audio
data and status information and connects to the APU's system Dbus for transmitting sensor data and
detected events to the APU Daemon. The actual audio processing is done by plugins.

4.4.1 Plug-in interface

ChannelWriteSP
- files @ int
+ ChannelWriteSP()
+ ~ ChannelWriteSP()
+ process(: struct adat_buffer*)
+ getName() : string&

LevelDetectSP

- threshold : int32_t
- level_cooldown : int

+ LevelDetectSP()
+ ~ LevelDetectSP()
+ process(: struct adat_buffer*)

+ usage() + getName() : string&
init() : bool + usage()
init() : bool
«interface»
SignalProcessor

+ ~ SignalProcessor()

+ getName() : string&
+ usage()

+ init(arg : string&, dIf : ApuDbusinterface*) : bool
+ process(: struct adat_buffer*)

JuliusSP

- jJuOutStr : string

- juOut : char

- fileName : char

- newName : char

- outBuffer : uintl6_t*

- outBufferData : uint16_t*
- inotifyBuffer : char*

- channel : int

- recState : int

- fds : struct pollfd

- deletejuliusFile : bool

+ process(: struct adat_buffer*)

+ getName() : string&

+ usage()

init() : bool

forkJulius() : bool

adinnetConnect() : bool

- switchChannel(: struct adat_buffer*)

- processjuliusOutput(: uint64_t, : uint64 t)
- processjuliusFiles(: uint64_t, : uint64_t)

March 2014

TrainDat

- ch_cnt:int

- ch_idx : int

- file_hdr : struct wave_hdr

- outBuffer : uintl6_t*

- rawFileBuffer : uintl6_t*

- outBufferSize : uint32_t

- rawFileBufferSize : uint32_t

- outBufferSize : uint32_t - channel : int

- outDataSize : uint32_t - sensors : int

- juPid : pid_t - raw_intv :int

- juStdin :int -raw_len : int

- juStdout : int - raw_rec_state : int
- inotifyFd : int - raw_intv_cnt : int
- watchFd : int - raw_len_cnt : int

+ TrainDat()

+ ~ TrainDat()

+ process(: struct adat_buffer*)
+ getName() : string&

- juSocket : int + usage()
+ JuliusSP() # init() : bool
+ ~ JuliusSP() - getArgs() : bool

- recordRawData(: uint64_t, : uint64_t)
- processjuliusOutput(: uint64_t, : uint64_t)

Page 42 of 89

Wl
|7| i

Lilds z%: S D3.2 Design and Implementation of the acoustic
- '; processing unit
SOEO:PRSOL I;? ZmEDNmEGZG ! PrOjeCt Number: 284628

Figure 21: APU plugin interface structure

To allow a modular design of the audio processing algorithms and to support individual development
efforts the AdatReader provides a plugin interface for audio data processing. Each plugin is integrated
into the audio data processing chain of the AdatReader. As input every received audio buffer is supplied
to the plugin, which may then process this data, apply any changes and/or deliver results of its
computations (for example sensor values) via the Dbus to the APU Daemon. The plugin interface is
realized using the Qt framework plugin API and provides a C++ interface class. Figure 21 shows this
interface class (SignalProcessor) and 4 plugins implementing this interface. Methods in the interface
declaration, which have to be implemented by each plugin are:

* init(...): This method is called upon plugin initialization providing an argument string and a
reference to the Dbus interface class.

* process(...): This method gets called for every received audio buffer and provides a pointer to
this audio data. The plugin should implement its actual processing work in this method.

* getName(...): This method has to return the plugins name.

* usage(...): This method should print an argument description of the plugin to stdout.

4.4.2 Available plugins

The following individual plugins are available in the default AdatReader installation on the APU:

» ch_write: This plugin allows recording the audio data to individual files per channel. This is
mainly used for test purposes and to verify the signal processing chain (for example to compare
audio data before and after a signal processing plugin).

* julius: This plugin is used for occupancy detection by means of the Julius speech recognition
framework. An instance of the Julius framework is created by the plugin. Input audio data is
delivered using the adinet socket interface of Julius. Sensor values (occupancy levels) are
obtained by parsing the output of the Julius process.

* level: The level detect plugin recognizes if a configurable level threshold for each individual
channel is reached. This information is used for the microphone activity display in the APU
Gateway (Section 6.1.4).

* traindat: With this plugin data for (re)training purposes can be gathered . It allows transmission
of audio data in configurable time slices to the BEMO server.

443 Usage
The AdatReader supports the following command line parameters:

» -f/--log-file: Enables logging to a file in addition to standard output.

* -l/--log-level: Sets the logging level (possible values are ERROR, WARNING, INFO, DEBUG,
DEBUG1, DEBUG2, DEBUG3, DEBUG4).

* -s/--sp-list: Adds a plugin with its parameters to the signal processing chain. This Parameter can
be supplied several times (for each plugin which should be used). Plugins are added to the
signal processor chain in order of their occurrence in the command line.

March 2014 Page 43 of 89

I
I |

Ll
I

Li’z%:z%!‘ D3.2 Design and Implementation of the acoustic
AECoR processing unit
b LU LY Project Number: 284628

Plugin parameters are supplied directly after the plugin name separated by a colon. The following
parameters are supported by the individual plugins:

e ch_write:[path]
o path: Path to a directory where the individual channel audio data files should be stored
(if omitted: /tmp).
e julius:[confirt]
o conf: Configuration file which should be used for the Julius speech recognition
framework. The working directory for Julius is also determined by this file.
o rt: Record time in seconds for each channel.
* level[:threshold]
o Threshold value to use for level detection. A positive 23 bit integer value has to be
supplied.
* traindat[:ch_mask:intv:len]
o ch_mask: Hex encoded 24 bit binary mask of channels to record raw audio data from.
For example a value of 3 means to record channel 0 and 1. A value of 800C means to
record from channels 2, 3 and 23.
o intv: Interval between recordings in seconds.
o len: Length of each recording in seconds.

For example to start the AdatReader with occupancy detection by the julius plugin and additionally the
level detect plugin activated with a threshold of 50000 this command line can be used:

./adatReader -s julius -s level:50000

Normally the AdatReader process should be started using the respective systemd service (Section
6.3.3). The configuration of this instance started through systemd is supplied by the wrapper script:
lopt/sdecob/bin/adatReader.sh. Configuration changes can be achieved by changes in this script.

March 2014 Page 44 of 89

e t%T D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

5 TECHNICAL SYSTEM VALIDATION REPORT

5.1 Introduction

In Deliverable D2.3 (Section 5) the validation methods and tests of the technical components in the
S4ECoB system, which have to be performed to ensure a proper working system, are described.
Following the results of the technical system validation are reported.

5.2 Test settings and results

5.21 APU communication test

The basic communication, receiving and encoding of the ADAT protocol and transmission to the APU
processor was tested using a PCl ADAT card installed in a PC. Figure 22 shows the test setup.

PC —— ’ \
PClI
ADAT 2" > APU |« >
IF
\ / N J

Figure 22: APU communication test setup

Several signals (Ramp, Square and sinusoidal) were generated, transmitted from the PCI card to the
APU, decoded in the FPGA, transferred to the APU processor and recorded using the ch_write plugin
(Section 4.4.2). A remote SSH connection from a PC to the APU was used to monitor and analyze the
recorded data.

All signals could be transmitted successfully. So the audio data receiver in the FPGA and the
communication between FPGA and processor were verified.

5.2.2 Audio sensor network communication test

In this test the communication in the audio sensor network (between ASU and APU) was verified. The
cycle to cycle and period jitter of the sample clock was measured to ensure proper function of the ASU.

The data transfer from ASU to APU using the ADAT protocol was already measured and documented in
Deliverable D3.1 (Section 5.6). The noise and total harmonic distortion measurements of the data
transmission is documented in Deliverable D3.1 (Section 5.4 and 5.5) and in a test with 40 m cable

March 2014 Page 45 of 89

D3.2 Design and Implementation of the acoustic
processing unit

SOEO:IPR?)L 23 ZmEDNmEGEG ! PrOjeCt Number: 284628

length between APU and ASU no communication errors could be detected. The ADAT receiver was
already verified in the APU communication test.

N 4 h
‘ sample | __[RS485 ASU
clock Driver
RS485 |
APU J 40m cat 5 cable Receiverf-[sg'rggke]
- /
' .)
Oscilloscope
I
|
4
(N /

Figure 23: Audio sensor communication measurement setup

In Figure 23 the test setup is shown. The sample clock (48 kHz) is provided by a clock generator IC
(PLL1707) on the expansion board of the APU and is distributed through the FPGA to the RS485 Driver
ICs and then transmitted over cat 5 cable to the ASU. A RS485 receiver ICs converts the signal to TTL
level in the ASU. The clock at the input of the RS485 driver in the APU and the clock at the output of the
receiver in the ASU were measured using two channels of a digital oscilloscope.

* Cycle to cycle jitter

Cycle to cycle (C2C) jitter is defined in JEDEC Standard 65B as the variation in cycle time of a
signal between adjacent cycles, over a random sample of adjacent cycle pairs [8].

The result of the measurement, a oscilloscope screenshot of the sample clock at the output of the
RS485 receiver in the ASU are shown in in Figure 24. Within over one million cycles no jitter was
measured. A deviation from the 48 kHz sample frequency was not detected.

March 2014 Page 46 of 89

L!J (
I

I
. | &
a1 148 : . .
| TJLIJ 11 D3.2 Design and Implementation of the acoustic
processing unit
%0 CoNTRoL 0F BUILDINGS Project Number: 284628
2 Agilent Technologies MON OCT 21 11:22:56 2013
g 200v/ 3] a ¥ 00s 50008/ Trigd % 253V
| I

Std Dev
0.0Hz

Measure Current Mean Min Max
Freq(1): 48.0kHz }48.000kHz 48.0kHz 48.0kHz

Freq(1): 48.0kHz

Display On Reset Transparent
3 Statistics]

Figure 24: ASU cycle to cycle jitter measurement

* Period jitter

Period jitter is the deviation in cycle time a clock signal with respect to the ideal period over a
number of randomly selected cycles.

In Figure 25 the screenshot of the oscilloscope with the measurement result is shown. The first
channel (yellow line) shows the sample clock in the APU and the second channel (green line) the
clock in the ASU. The following delays were measured:

e 234.5 ns minimum delay

e 239.5 ns maximum delay

e 236.78 ns mean delay

* 1.0361 ns standard deviation

March 2014 Page 47 of 89

Wil
|

|
=)
I

. |
TJLIJLll T1 D3.2 Design and Implementation of the acoustic
processing unit
%0 CoNTRoL 0F BUILDINGS Project Number: 284628
2% Agilent Technologies MON OCT 21 11:54:55 2013
0 200v/ @ 200v/ § a & 18608 50008/ Trigd £ 253V

Measure | | Current Mean Min Max Std Dev Count
mH-»Zﬂ:} 236.0ns 236.78ns 234.5ns :239.5ns 1.0361ns 202.0k

A(1 £-2 £): 236.0ns

Display On Reset Transparent
[Statistics []

Figure 25: ASU phase jitter measurement

The period of the sample clock (48 kHz) is 20,833 ps, so a jitter in the sample clock in the ns range is
negligible and has no effect in the audio signal quality. The result of the jitter and the noise and
distortion measurements is that a 40m cable could be used to connect the APU and the ASUs with no
influence on the signal quality.

5.2.3 Time synchronization

Time between APUs and BEMO server is synchronized using the precision time protocol (PTP). Tests
of the precision of this synchronization are already described in Deliverable D2.3. In the test described
in the following, the time until all APUs and the BEMO server are synchronized is measured, as it adds
to the startup time of the complete network because of occupancy values identified by the network are
only valid after PTP synchronization has finished.

For these tests two values were measured: The time needed for the PTP daemon on the APU to
synchronize after connection to the APU Gateway was established and the time PTP daemon and
server needing to synchronize if the PTP server starts after APU connection to the Gateway is already
established.

Average time until synchronization after APU connect 2s

Average time until synchronization after PTP server restart 15s

Figure 26 shows the APU Gateway’s graphical user interface displaying 7 connected APUs which are
time synchronized to the BEMO server (indicated by a green clock symbol for each APU).

March 2014 Page 48 of 89

e t%T D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

| APU Gateway 0.9.2 + . 0X
Fle Help

w
APU at: 172.16.10.21 9 ‘
)
APU at: 172.16.10.38 9 ‘
w
APU at: 172.16.10.39 9 ‘
)
APU at: 172.16.10.20 9 .
w
APU at: 172.16.10.37 9 ‘
w
APU at: 172.16.10.22 9 .
)
APU at: 172.16.10.14 9 ‘

APUs: 7

Figure 26: APU Gateway screenshot

5.2.4 Sensor signal propagation delay

In this test the possible reaction time of the occupancy sensor network to sound events is measured
and classified. This signal propagation time (not necessarily essential for occupancy detection but for
extended uses of the network like localization) between the occurrence of a sound event up to
registration of this event by the BEMO server is limited in several ways:

» Buffering of the audio data stream in the APU’s FPGA and CPU’s memory

 Signal processing algorithms of the APU

* Delays introduced by the network connection and TCP streams SSL encryption between APU

and BEMO server
* Receiving and processing of the network messages by the APU gateway

March 2014 Page 49 of 89

Wl
|7| i

Lilds z%: S D3.2 Design and Implementation of the acoustic
- '; processing unit
SOEO:PRSOL I;? ZmEDNmEGZG ! PrOjeCt Number: 284628
NW
4 N 4)
_ptpd] _ptpd]
PC APU
(BEMO)
g J . J

H Asu |

PPPPPYY

Figure 27: Signal propagation measurement setup

This signal propagation delay was measured using the test setup shown in Figure 27. A PC (in the role
of the BEMO server) and an APU are connected via network. Local time of PC and APU are
synchronized using PTP protocol (see previous section).

To perform the actual measurement, the PC generates an audio signal (1kHz sine waveform was used)
by means of a connected speaker. Playing the sound was done using the aplay utility. This tool from the
Advanced Linux Sound Architecture utility package allows playing audio files from the command line in
various formats. To record the exact start time of audio signal a patch was applied to this tool. On the
first write event of audio data to the sound hardware of the PC a time stamp is taken and printed to the
command line for logging. This ensures maximum precision achievable in software of the exact time the
audio signal is generated. Nevertheless this introduces a delay between first audio buffer write
operation and actual tone generation of the speaker by the PC sound hardware (for example the time to
fill hardware buffers) of unknown length. For this test this delay is assumed to be constant and minor in
comparison to the total signal propagation delay.

March 2014 Page 50 of 89

| . . .
=L D3.2 Design and Implementation of the acoustic
Tl processing unit
S4ECoB
%0 SONTROL OF BUILDINGS Project Number: 284628
PC-HW pmig‘g’;?jon Buffering by Buffering and Network delay Processing
delay through air FPGA processing by APU by Gateway
| | | | | | |
| | | | | | |
I i I i i } —>t
|
Propagation Time 1 '
Propagation Time 2 !

Figure 28: Signal propagation time scheme

Speaker and microphone array of the ASU are placed in a distance of 1m to each other. So after
approximately 3ms the tone generated by the speaker is received and converted into an electrical
signal. All 8 microphone signals are converted to a digital ADAT stream and sent to the APU by the
ASU. Here the audio data is unpacked and transferred to main memory of the CPU. Each block of audio
data gets marked with a time stamp after reception. In the next step signal processing by the APU is
performed. For this test a simple level detection algorithm gets inserted in the signal processing chain. If
a preconfigured threshold of all incoming 8 audio channels is reached, a message is generated and
transmitted over the network connection to the APU gateway. Upon reception of such a message, the
Gateway generates a third time stamp.

Figure 28 shows the described actions on a time line (distances are not true to scale). With propagation
time 1 and 2 the delays between the recordings of the time stamps is indicated. The measurement was
carried out 1000 times.

200 T T T [T T

150 -

Number of Samples
o
o
|

50

L | L L L L 1 L L L | L [1 L L P
0 5 10 15
Delay in ms

Figure 29: Signal propagation time 1

Figure 29 shows the propagation time 1 in form of a histogram with a near normal distribution around
8ms. With the minimal signal delay at 3ms and maximum at 14ms this correlates with the expected
results following the delay of the sound wave between speaker and microphone (3ms) limited by the
speed of sound through air and the maximum buffer depth of the FPGA of 512 samples (at 48 kHz
sample rate this equals approximately 10ms).

March 2014 Page 51 of 89

D3.2 Design and Implementation of the acoustic
processing unit

%0 SONTROL OF BUILDINGS Project Number: 284628

150 1

Number of Samples
)
o
T
|

(9]

o
T T T

|

L0 i T ———

PR —E———
0 10 20 30 40 50
Delay in ms

I —

Figure 30: Signal propagation time 2

Figure 30 shows the propagation time 2 (between sound event generation and reception of the
threshold message by the APU Gateway). The histogram shows the distribution of time delay at two
points around 12 and 50ms. This results of additional unpredictable signal processing time of the APU
by the Julius audio framework for occupancy detection and additional network activity because of other
messages exchanged between APU and Gateway apart from the threshold one used for this test.

With a maximum propagation delay of 52ms and a jitter of 43ms the system was proven to be able to
react fast to sound events in spite of different audio buffer mechanisms, signal processing algorithms
and encrypted network based communication.

5.2.5 Remote access

Remote access to each APU is essential for monitoring, maintenance and further development of the
occupancy sensor network once deployed in the demo sites. This test was carried out to ensure APU
access is possible both in local network and over network boundaries using the Internet.

IMMS Network (llmenau) IDMT Network (Oldenburg)

“ e 2

-)=

Intemet BEMO server
Gateway (DMZ)

\. J . J

APU

Figure 31: Remote access scheme

March 2014 Page 52 of 89

1
LI’LL L;l T T D3.2 Design and Implementation of the acoustic
sS4 E|C oB processing unit
b LU LY Project Number: 284628

Tests in a local network were performed using the IMMS test network setup. Remote access was tested
using the setup shown in Figure 31: An APU located at project partner FGH-IDMT in Oldenburg was
accessed from IMMS limenau over the Internet. The APU at IDMT is connected to a server in the DMZ
which accepts connection from Internet on the secure shell port 22. The firewall at IMMS was configured
to allow SSH connections from an internal host over the Internet router to the IDMT server.

Terminal - elstts@oldmz0l.idmt.fraunhoferde

Datei Bearbeiten Ansicht Terminal Gehezu Hilfe

~ $ ssh elstts@oldmz@l.idmt.fraunhofer.de =
elstts@oldmz@l.idmt.fraunhofer.de's password:
Warning: untrusted X11 forwarding setup failed: xauth key data not generated
Warning: No xauth data; using fake authentication data for X11 forwarding.
Last login: Mon Nov 11 09:35:42 2013 from 192.168.30.134
[elstts@localhost ~]$ ssh root@l72.16.10.14
root@l72.16.10.14's password:

Welcome on the

/

— 7
W/
_ S/ S
/7 77 7

/L A

root@apu:~#

Figure 32: APU remote access screenshot

Thus an SSH connection to IDMT server for the user elstts can be established with the command:
ssh elstes@RoldmzOl.idmt.fraunhofer.de

After that a login to the APU with the IP address 172.16.10.14 is possible with:
ssh root@172.16.10.14

Figure 32 shows such a login process. Using certificate based authentication and configuring the ssh
client accordingly it is also possible to automate the APU login over one or more stations.

The local and remote login process was tested several times. Always a connection to the APU could be
established.

Using this SSH connection updating software components or configuration data on the APU is possible.

To ensure maximum flexibility at further APU software development, updating the complete firmware
image of an APU is possible, too. This process involves several steps. The first one is the already
described remote login to the APU. After that, the boot mode of the APU has to be configured for rescue

March 2014 Page 53 of 89

|
LI’L'J E:JT l D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

boot. This is done by mounting the boot partition of the APU’s interval flash card and editing the boot
loader configuration file uEnv.txt:

root@apu:~# mount /dev/mmcblkOpl /mnt/card

root@apu:~# vi /mnt/card/uEnv.txt

Terminal - elstts@oldmz0l.idmt.fraunhoferde

Datei Bearbeiten Ansicht Terminal Gehe zu Hilfe

load bc=mw ${loadaddr} 0 10; i2c dev 3; eeprom read ${loadaddr} O 4; env import [
save_bc=i2c dev 3; env export -b ${loadaddr} bc; eeprom write ${loadaddr} 0 4
secure boot=run load bc; if test ${bc} -gt 3; then run rescueboot; else setexpr

Normal MMC Boot
mmcargs=setenv bootargs console=${console} vram=${vram} root=/dev/mmcblk@p3 rw r
mmcboot=run start_wdt; run mmcargs; ext2load mmc 0:3 ${loadaddr} /boot/ulmage; b

Rescue MMC Boot
rescueargs=setenv bootargs console=${console} vram=${vram} root=/dev/mmcblkOp2 r
rescueboot=run rescueargs; ext2load mmc 0:2 ${loadaddr} /boot/ulmage; bootm ${lo

NFS Boot

nfsroot=/romfs/panda

nfsargs=setenv bootargs console=${console} vram=${vram} root=/dev/nfs rw nfsroot
nfsboot=run nfsargs; tftp ${loadaddr} ulmage panda; bootm ${loadaddr}

Boot Command

uenvcmd=run rescueboot

I /mnt/card/uEnv.txt 35/35 100% E

Figure 33: APU boot configuration

The variable uenvemd at the end of the file has to be changed from “secure_boot” to “rescueboot”
(Figure 33). After saving and closing the file the APU can be rebooted:

root@apu:~# reboot

March 2014 Page 54 of 89

T

N
LI’L': c%: T D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

Terminal - elstts@oldmz0l.idmt.fraunhofer.de

Datei Bearbeiten Ansicht Terminal Gehe zu Hilfe

~ % ssh elstts@oldmz0l.idmt.fraunhofer.de -
elstts@oldmz@l.idmt . fraunhofer.de's password:
Warning: untrusted X11 forwarding setup failed: xauth key data not generated
Warning: No xauth data; using fake authentication data for X11 forwarding.
Last login: Mon Nov 11 09:35:42 2013 from 192.168.30.134
[elstts@localhost ~]$ ssh root@l72.16.10.14
root@172.16.10.14's password:

Welcome on the

/77 S _ N _J _ T/ 7 _7 /77

TN NS Tl T
I/ Tl 1T
/ /I N\ / /(1)

root@apu:~#

Figure 34: APU rescue login

This leads to the APU rebooting in rescue mode. The same already described login procedure can be
used to re-connect to the APU via ssh (Figure 34). In the next step the partition containing the normal
operating system on the flash card of the APU has to be re-formated:

root@apu:~# mkfs.ext3 /dev/mmcblkOp3
root@apu:~# mount /dev/mmcblkOp3 /mnt/card

Copying the new firmware image to this partition can be done in various ways. Avoiding an additional
storage of the firmware image on the APU it can be for example extracted directly to the mounted flash
card partition through an SSH pipe from the host (Figure 35).

March 2014 Page 55 of 89

1
LI’LL L;l T T D3.2 Design and Implementation of the acoustic
sS4 E|C oB processing unit
b LU LY Project Number: 284628

Terminal - elstts@oldmz0l.idmt.fraunhofer.de
Datei Bearbeiten Ansicht Terminal Gehe zu Hilfe
~ $ cat apu_rootfs 20131030 _100929.tar.bz2 | ssh root@l72.16.10.14 [+

"tar -C /mnt/card -x -j -v -f -

Figure 35: APU firmware copy

After un-mounting the flash card partition with the new firmware image, the boot-loader configuration
has to be change again to “secure_boot”. Last step is to reboot the APU again which loads the newly
copied firmware image:

root@apu:~# umount /mnt/card

root@apu:~# mount /dev/mmcblkOpl /mnt/card
root@apu:~# vi /mnt/card/uEnv.txt
root@apu:~# reboot

This firmware update procedure has been tested several times in the local IMMS test network and
remotely by IMMS with an APU located at IDMT Oldenburg. Every time the new firmware image was
successfully installed.

5.2.6 Robust firmware update process

In every embedded device the firmware update process is critical as external events like for example an
unexpected power loss may leave the device in an undefined state where further operations or remote
access is impossible. This has to be avoided as an easy physical access to the APUs after deployment
for exchanging the flash card cannot be guaranteed or is impracticable. That's why the firmware update
process of the APUs was designed to be robust.

March 2014 Page 56 of 89

ul&u'||
ITT?5TI

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

D3.2 Design and Implementation of the acoustic
processing unit

Project Number: 284628

The normal (complete) firmware update is carried out in several steps as already described in 5.2.5:

1. Remote access to APU

No ok owd

8. Rebooting

Setting boot mode to rescue boot

Reboot in rescue mode

Remote access to APU

Formatting flash card partition of the normal system
Extracting new firmware image to normal system partition
Setting boot mode to normal

To ensure the robustness of the firmware update process a power loss situation was simulated in this
test at every of these steps. The results after the reconnection of power to the APU are listed below:

Power loss in state Behavior

1 APU reboots in normal operation mode

5 APU reboots either in normal or rescue mode (depending of exact timing of
the power loss)

3 APU reboots in rescue mode
APU reboots in rescue mode

c APU reboots in rescue mode (partition has to be formatted again, to
continue update)

6 APU reboots in rescue mode (partition has to be formatted and the image
extracted again to continue update)

7 APU reboots in rescue mode or to new system firmware (depending of exact
timing of the power loss)

8 APU reboots to new system firmware

March 2014

Table 14: APU behaviour after power loss

Page 57 of 89

)
‘fL'J % T T D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

Terminal - elste2@pluto:/home/elste

Datei Bearbeiten Ansicht Terminal Gehe zu Hilfe

Login —= /home/elste $ ssh root@l72.16.10,39 -
root@l72,16.10,39's password:
Welcome on the

V7 e ey S S N Y RV i
RV S A SV B A W A e o
T TS T I/ IR
VR A R N N S A A o
AR, i/ 77T 77
Pl P T NN drrr T
AT Fld_ AL /1t

sh: xauth: command not found
—s|root@apu-rescue: ~¢ nkfs, ext3 /dev/mmchlkop3
command |neofs 1,42,1 (17-Feb-2012)
Discarding device blocks: done
Filesystem label=
0S type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
225792 inodes, 901632 blocks
45081 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=925941184
28 block groups
32768 blocks per group, 32788 fragments per group =
8064 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 2940912, 819200, 884736

Allocating group tables: done
Writing inode tables: done
Powerloss — [Creating journal (16384 blocks): Write failed: Broken pipe

Successfull login after —= ‘home/elste § ssh root@l72.16.10,39
reapplying power root@l72.16.10.39's password:
Welcome on the
L __r s / i S) S NS
NN S IV v I A A
I A v A v R A A A A A |/ I
/ ;oA AN N / A \ /

VA R AV B Y AV R AV A o SR o
Iy 771 M NN/ £l

sh: xauth: command not found
root@apu-rescue:~# [

Figure 36: Screenshot of a power loss during flash card format at firmware update

Figure 36 shows a screen shot of the update process at step 5 (re-formatting the flash card partition)
during a power loss, where the SSH connection gets terminated. After reapplying power to the APU
login to the rescue system is possible again.

March 2014 Page 58 of 89

1]
I T D3.2 Design and Implementation of the acoustic
S4ECoB processing unit

%0 SONTROL OF BUILDINGS Project Number: 284628

Terminal - elste2@pluto: -

Datei Bearbeiten Ansicht Terminal Gehezu Hilfe

11ib/udev/keymaps/force-release/dell-xps -
11b/udev/keymaps/force-release/conmon-volume-keys
lib/udev/keymaps/force-release/hp-other
1ib/udev/keymaps/medion-fid2060
lib/udev/keymaps/samsung-90x3a
lib/udev/keymaps/hewlett-packard-tx2
1ib/udev/keymaps/medionnb-aS555
lib/udev/keymaps/samsung-other
—=|lib/udev/keymaps/samsung-sqlus
11ib/udev/keymaps/samsung-sx20s
lib/udev/keymaps/acer-aspire_5920g
lib/udev/keymaps/compag-e_evo
lib/udev/keymaps/dell-latitude-xt2
lib/udev/keymaps/logitech-wave
lib/udev/keymaps/toshiba-satellite_aloo
lib/udev/keymaps/toshiba-satellite_allo
lib/udev/keymaps/toshiba-satellite_m30x
lib/udev/keymaps/inventec-s
Powerloss ==\ 0\i11ed by signal 2.

Frmware fie
transfer

Successfull login after ___ - $ ssh root@l72.16.10.39

reapplying power root@l72.16.10.39's password:
Welcome on the

77 / FA A R A VA
NN T VA B A I VA AV A AV A
T g Iy
T AN | ST
F77 7 _ N 7/ IR I

(T 77\ 7 I I/ 7 10

sh: xauth: command not found
root@apu- rescue:~# v

Figure 37: Screenshot of a power loss during firmware image extract at firmware update

Figure 37 shows a screen shot during a power loss a step 6 (copying of the new firmware image) of the
update process. Again the copy process gets terminated but login is again successful after powering up
the APU.

At no time the APU was inaccessible after regaining power supply.

5.2.7 BEMO communication

A test setup consisting of several APUs (maximum 7 APUs in different configurations) and an APU
gateway running on a BEMO server was installed in the IMMS company network.

In this test network the occupancy network communication and the data transfer between APUs and
APU gateway was tested. The following tests were carried out:

* Data transmission of the occupancy levels, status information from the APUs to the BEMO
server

e Raw audio data transmission from APUs to BEMO server
* Encryption of the data transfer

March 2014 Page 59 of 89

Wl
|7| i

Lilds z%: S D3.2 Design and Implementation of the acoustic
- '; processing unit
SOEO:PRSOL I;? ZmEDNmEGZG ! PrOjeCt Number: 284628

The APUs were tested in different configurations:

¢ One APU with three ASUs connected
¢ Three APUs with each one ASU connected
¢ Seven APUs in the test network

In all test setups the communication between the APUs and the BEMO server was successfully verified.

5.2.8 APU network log-in

To ensure a constant operation of the occupancy sensor network it has to be robust against network
errors where the connection between APU and BEMO server is separated (either physically, through
software filters (for example a misconfigured firewall) or power loss of BEMO server or APU). After
reestablishment of the network connection the data channel between APU and APU Gateway should be
automatically restored as well.

Therefore the time between initial boot of the APU until registering with the APU Gateway, the time until
the APU reconnects to the Gateway after a network error and the time upon starting the APU Gateway
until connection with an already running APU (simulating a restarted BEMO server) has been measured.
The results are listed below.

Average time until connection after APU reboot: 56s
Average time until connection after APU network error: 53s
Average time until connection after APU Gateway start: 3s

This tests shows, that even after a complete power loss the network is operational again in less than
one minute.

5.2.9 Environmental conditions and power consumption

5.2.9.1 Power consumption

The power consumption of the APU was measured using the N6705B DC power analyzer from Agilent
Technologies. The input voltage of the APU (5V) was supplied by the power analyzer and measured.

Figure 38 shows a screenshot of the power consumption measurement of one APU with no ASU
connected. In this state only the network components, the time synchronization and communication with
the APU gateway are running, thus an average power consumption of 2.65\W was measured.

March 2014 Page 60 of 89

T

N
LI’L': c%aT D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

L_Ly__h,uwl_arbawluum._!_uﬂ_hﬂ #L:LJ,l‘AA,_LMPJJﬂ‘WM&MMWL

8 {,L;‘L;, J_!_L‘,JL*,.'MLJJ—AMQLA_,MLHQLJL*J»—\‘JL_J-L,J._,L»J_L,AA LLL_J_L»—-«U,.,JM_LLH_L-_AJM_,J&

2500 11000 1,500 01000 0500 0

Marker 1
-49,957275 s

Figure 38: APU power consumption with no ASU connected

Figure 39 shows a screenshot of the power measurement with three ASUs connected to the APU. In
this measurement setting the AdatReader with the Julius (Section 4.4.2) plugin running on the APU and
the audio data from all three ASUs were processed in the APU. In this setup, that is used in the pilot
sites the APU requires an average power of 2.85 W and a maximum power of 3.44 W.

1

et i

AR A et b o oA

2000

Marker 1
-49,991303 s

Figure 39: APU power consumption with three ASU connected

March 2014 Page 61 of 89

Il
]

i
TL%JL;? D3.2 Design and Implementation of the acoustic
S4ECo B processing unit
b LU LY Project Number: 284628

In Figure 40 an enlarged detail of the previous measurement is shown. The time between the two
markers (power spikes) is 5.37ms. This time corresponds to the FPGA read access cycle, 256 audio
data values were stored and then transferred to the processor.

t =256%1/48kHz = 5.333ms

Figure 40: APU power consumption GPMC access

These measurements show that the APU is an energy efficient platform. A common personal computer
consumes between 30 and 100 W, compared with this the APU needs less than 10% of the electrical
power.

5.2.9.2 Environmental Conditions

The environmental test was performed to ensure the proper work of the APU under different
environmental conditions. In this test setup the APU was put inside a conditioning cabinet (Figure 41),
one ASU and a Laptop, acting as BEMO server was connected to the APU.

March 2014 Page 62 of 89

Llé|éll
I TTF5T1

D3.2 Design and Implementation of the acoustic

S4ECoB processing unit
B O0ONTROL of BulLDiNGs | Project Number: 284628

Figure 41: APU in conditioning cabinet

The following tests were carried out:
* APU heartbeat
Check APU life sign in the APU gateway, so occupancy network connection is still working.
* APU reconnect

Disconnect the APU from the BEMO server and reconnect after a while. Check if the APU establish
the connection with the APU gateway.

e ASU reconnect

March 2014 Page 63 of 89

Wl
I i

‘f& LI: S D3.2 Design and Implementation of the acoustic
,' ~ processing unit
SOEO:PR?)L I;g ZmEDNmEGZG ! PrOjeCt Number: 284628

Disconnect the ASU from the APU and check status change in the APU gateway. Reconnect the
ASU after a while and check status change in the gateway.

e Data transfer

The successful data transfer from the ASU to the APU and to the APU gateway was checked using
the level plugin running on the APU (see 4.4.2) by generating noise in front of the microphones and
check the response in the APU gateway.

Table 15 lists the test results under the different environmental conditions.

Condition Test Result
50°C for 2 hours
APU heartbeat passed
APU reconnect passed
ASU reconnect passed
Data transfer passed
0°C for 2 hours
APU heartbeat passed
APU reconnect passed
ASU reconnect passed
Data transfer passed
50°C for 2 hours
APU heartbeat passed
APU reconnect passed
ASU reconnect passed
Data transfer passed

Table 15: APU condition test results

Under all conditions the tests were successfully performed and the APU worked as expected. No errors
or unexpected behaviour was detected.

5.210 Long-term test

As described in Section 5.2.7 a test setup consisting of several APUs and an APU gateway running on
a BEMO server was installed in the IMMS company network. The test network was operating over a
period of 3 months, the log files generated by the APU gateway were analyzed and no failure or
unexpected behavior was noticed.

March 2014 Page 64 of 89

Wl
|7| i

Lilds z%: S D3.2 Design and Implementation of the acoustic
- '; processing unit
SOEO:PRSOL I;? ZmEDNmEGZG ! PrOjeCt Number: 284628

5.3 Test conclusions

Table 16 shows the hardware and software requirements for the embedded acoustic processing unit as
defined in Deliverable D2.3 and the summarized results of the technical system validation.

The requirements Ra 1.4, Ra 4.1, Rr 4.3, Ra 4.4 and Ry 5.1 cannot be verified in a test setup.

The architectural requirement Ra 1.4 — “Easy to use and install in the demo sites” was considered during
the whole APU development process. For all wired connections standard cables can be used. In the
commissioning manual (Annex B) the installation of an APU is described. In general it follows the user-
friendly plug-and-play paradigm. The software architectural requirements Ra 4.1 — “Use of open-source
software for APU wherever possible” and Ra 4.4 — “Secure network communication and APU access
restrictions” have been considered as part of the overall software architecture and its implementation.

The functional requirement Rr 4.3 — “Secure remote APU access for audio algorithm and APU firmware
update using Internet and demo site specific networks (including firewalls and VPNs)” have to be tested
as soon as the APUs are installed in the demo sites and a remote access to the BEMO server is
available.

The requirement Ry 5.1 — “Electrical safe power supply for APU” is addressed by using a standard wall
plug power supply for the APU.

In summary, all APU requirements as defined in Deliverable D2.3 were successfully checked and
verified.

March 2014 Page 65 of 89

LlJ (
|

L]]
=P N1=
| TFT

f

)
~—

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

D3.2 Design and Implementation of the acoustic

processing unit
Project Number: 284628

Reg.

test #

5.3.1

Rr

5.3.2

Rr

5.3.3

Ra

5.3.4

Ra

5.3.5

Ra

5.3.6

Ra

5.3.7

Rr

5.3.8

Rr

5.3.9

Rr

5.3.10

Rr

5.3.11

R

5.3.12

Ra

5.3.13

Ra

5.3.14

Rr

5.3.15

Rr

5.3.16

Ra

5.3.17

R

5.3.18

R

5.3.19

Rr

5.3.20

Rr

X

March 2014

Table 16: Test and requirements coverage

Page 66 of 89

e t%T D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
b LU LY Project Number: 284628

6 APU AND OCCUPANCY SENSOR NETWORK SETUP AND MANAGEMENT
MANUAL

In this section the overall setup and management of the occupancy sensor network will be explained.
This includes the necessary setup of the APU Gateway and PTP daemon on the BEMO server as well
as the remote management of the APUs in case of any updates or necessary configuration changes. It
is mainly targeted at engineering and IT personnel. Physical installation and commissioning of the APUs
is covered separately in Annex B.

6.1 APU Gateway

6.1.1 Installation

The APU-Gateway can be provided as GUI and non-GUI version for i686 and x86_64 architecture and 2
different package management systems (RPM Package Manager, Debian Package Manager) or as
binary archive. When using an RPM- or DEB-based Linux distribution the Gateway packages can be
installed using the distributions package manager application.

For example using Ubuntu (13.04):

sudo dpkg -i apuGateway[Gui]-<version>-<arch>.deb

CentOs (6.4) requires the addition of 2 software repositories prior to installing the Gateway as it
depends upon the Qt Framework >=4.7 and the Protobuf library (see next section), both not available in
the default CentOs repositories:

su

yum install http://ftp-stud.hs-
esslingen.de/pub/epel/6/x86 64/epel-release-6-8.noarch.rpm

yum install
http://software.freivald.com/el/6/x86 64/os/software.freivald.
com-2.0.0-0.el.nocarch.rpm

yum update

yum install apuGateway[Gui]-<version>-<arch>.rpm

On Linux distributions without RPM or DEB support a binary package archive can be provided. This
archive has to be extracted. After that the Gateway can be started directly from the generated directory.
All library dependencies (see next section) have to be resolved manually of course.

tar xJf apuGateway[Gui]-<version>-<arch>.tar.bz2

cd apuGateway[Gui]-<version>-<arch>/bin

March 2014 Page 67 of 89

Wl
|7| i

LIJL;H%! D3.2 Design and Implementation of the acoustic
- Cn processing unit
SOEO:PRSOL I;? ZmEDNmEGZG ! PrOjeCt Number: 284628

./apuGateway[Gui]

6.1.2 Dependencies

Runtime dependencies for the APU Gateway are the Qt Framework libraries >=4.7, the Protobuf library
(>=2.4.0) and a running Dbus daemon.

6.1.3 Usage

After installing the Gateway it may be called from a terminal by typing "apuGatway" or "apuGatewayGui"
respectively for the GUI version. The Gateway can be called with several parameters. A full list of the
available options are printed to the terminal by calling the Gateway with "--help". Parameters and values
follow the GNU long option syntax, meaning parameters are started with "--" and separated from values
by "=". For examples setting the Gateways network port to 7000 and the audio data output directory to
tmp is done by calling: "apuGateway --port=7000 --wavdir=/tmp”.

The parameters are in detail:

* help: Display the parameter list with short explanations.

* port: Specify the port the APU Gateway will listen for incoming APU connections. The default
value is 6789.

* logfile: Enables logging to a file in addition to standard output.

* loglevel: Sets the level for logging messages from 0 (all log messages) to 5 (no messages). The
level names in detail from 0 to 5 are: trace, debug, info, warn, error and fatal.

» wavdir: Specifies a directory for sound data output. Sound data from the APUs (training data,
unknown sample data) is saved to this directory in a subdirectory per APU.

* priv: Enable privacy mode. In an insecure environment where sound data should not be stored
to local hard drive this option allows invalidating any received sound data before writing to disk.
Mainly for testing purposes.

* dbus: Sets the dbus to use. Available options are system and session. It should not be
necessary to change this option as the wrapper scripts uses the session DBus as default and if
none is available creates one exclusively for the Gateway.

* ssl: Enables or disables (options: on or off) SSL encryption of the network traffic between APU
Gateway and APU. APU and Gateway have to use the same setting of course. Default setting is
"on".

6.1.4 Graphical user interface

March 2014 Page 68 of 89

| D3.2 Design and Implementation of the acoustic
S4ECOB processing unit
SO hod 58 S Project Number: 284628

|| APU Gateway 0.9.3 + _ 0O X

File Help

APUs: 5

Figure 42: APU gateway graphical user interface

The purpose of the graphical user interface is mainly to give a fast overview about the APUs currently
connected to the Gateway and their status. Figure 42 shows the main window of the Gateways user
interface with currently 2 connected APUs. Each APU window can be expanded (Figure 43). In this
more detailed view live occupancy annotations and the status of to the APU connected ASUs and their
microphones is shown (if the respective Pluglns for the AdatReader are enabled, see Section 4.4.2).

Annotation: =occl> at: 16:21:01.669

Figure 43: APU gateway GUI expanded view

March 2014 Page 69 of 89

LL l Ll d ' (=] . . .
| | LI“T’ zT: T D3.2 Design and Implementation of the acoustic
SAEC o processing unit
SOEO:PRSOL I;? ZmEDNmEGZG ! PrOjeCt Number: 284628
6.2 PTPd

To synchronize all APU local clocks the BEMO server is required to run the Precision Time Protocol
daemon 2 in server mode. Recommended for installation and configuration is the use of the distributions
package manager and configuration utilities. If the daemon is not available through the distributions
repositories, it can be obtained as source code archive from http://ptpd.sourceforge.net/ (recommended
version: 2.2.2). After extracting and compiling the daemon it should be run (only possible as root user)
with to following options set:

./ptpd2 -G -C -b <network interface>

6.3 APU management

6.3.1 Network connection

Each APU can be reached for maintenance via an SSH connection on standard port 22. Login as root
user with the correct password for the APU can be achieved from any terminal which is able to reach
the APU via network with:

ssh root@<APU IP address>

6.3.2 Network settings

Network settings of the APU are stored in EEPROM data to ensure persistence throughout firmware
updates or booting the rescue system. Therefore the settings can not be changed using standard
configuration tools or via editing the interface settings file on the APU file system. Instead two command
line utilities are provided for setting and reading network configuration date to/from EEPROM on the
APU itself:

netconf2eeprom and eeprom2netconf.
Netconf2eeprom has to be called with several options. Starting the utility without will display this list, too.
netconfl2eeprom <dhcp (1]0)> [<address> <netmask> <network>

<gateway> <dns> <bemo>]

Only static IP address settings are supported currently, so as an example the following command line
would set the APU IP address to 172.16.10.14, with the BEMO server at 172.16.10.203, Gateway and
name server at 172.16.10.1:

root@apu:~# netconfl2eeprom 0 172.16.10.14 255.255.255.0
172.16.10.0 172.16.10.1 172.16.10.1 172.16.10.203

Success of the operation can be validated by reading the network settings from EEPROM using the
eeprom2netconf tool:

root@apu:~# eeprom2netconf

March 2014 Page 70 of 89

T
N

Ll 1l&
‘TJUJ LI: | D3.2 Design and Implementation of the acoustic
' processing unit
SOEO:PR?)L I;g ZmEDNmEGZG ! PrOjeCt Number: 284628
auto ethO

iface ethO inet static
address 172.16.10.14
netmask 255.255.255.0
network 172.16.10.0
gateway 172.16.10.1
dns-nameserver 194.95.133.7
#bemo-server 172.16.10.203

After changing network configuration the APU has to be rebooted for the changes to take effect.

6.3.3 Service handling

APU software responsible for the complete APU operation is started using systemd service
infrastructure. Notably adatReader, APU-Daemon and FPGA configuration can be managed using
systemd's control utility systemctl. Among many other options systemctl allows starting and stopping
these services and configures their startup behavior at boot time of the APU.

For example reconfiguring the FPGA can be done with the following command:

root@apu:~# systemctl restart fpgaconf.service

To enable automatic adatReader startup at boot time this command can be used:

root@apu:~# systemctl enable adatReader.service

Table 17 shows the APU specific services available with a short description.

Service Description
adatReader.service Manages adatReader program startup
apud.service Manages APU Daemon startup
eeprom2netconf.service Generates network configuration file from EEPROM data
fpgaconf.service Upload FPGA configuration
init5_net.service Configures APU network interface
ptpd.service Manages PTP daemon startup
watchdog.service Manages watchdog daemon startup

Table 17: APU services

March 2014 Page 71 of 89

ll ! | .| | & . . .
| | Llh_: zT! T D3.2 Design and Implementation of the acoustic
S 4 ,'; "R processing unit

b LU LY Project Number: 284628

6.3.4 FPGA configuration update

The FPGA configuration consists of a bitfle located in the APU file system:
lopt/sdecob/res/s4ecob_top.bin. To update the FPGA configuration this file can be simply exchanged.
The actual FPGA configuration update is carried out at next APU boot or can be triggered manually be
restarting the appropriate service (Section 6.3.3):

root@apu:~# systemctl restart fpgaconf.service

6.3.5 AdatReader configuration

To start the adatReader process a wrapper script is used: /opt/s4ecob/bin/adatReader.sh. To configure
adatReader startup, for example plugin settings, this script can be edited accordingly. Changes take
effect after rebooting the APU or restarting the adatReader manually using its systemd service:

root@apu:~# systemctl restart adatReader.service

6.3.6 Firmware update

Updates of the APU firmware are carried out remotely by booting into the APU’s rescue system and
exchanging the root file system of the SD card partition containing the normally operational firmware.
Several steps are required:

* Login remotely into the APU which should be updated using a secure shell (for example from
the BEMO server):

bemo # ssh root@<apu-ip-address>

* The boot partition containing the boot loader configuration has to be mounted:
root@apu:~# mount /dev/mmcblkOpl /mnt

* Boot settings have to be changed by editing the boot loaders configuration file and setting the
variable uenvemd to “run rescueboot’, so the APU will boot into rescue mode. For example by
issuing the following command:

root@apu:~# sed -i 's/uenvcmd=.*/uenvcmd=run rescueboot/'
/mnt/uEnv.txt

* Now the boot partition may be unmounted and the APU rebooted:

root@apu:~# umount /mnt; reboot

» After renewed login to APU and verification that the rescue system was successfully booted
(login screen should show “I! Rescue !I" in ASCII art letters), the system partition of the SD card
can now be re formated and mounted:

root@apu:~# mkfs.ext3 /dev/mmcblkOp3

root@apu:~# mount /dev/mmcblkOp3 /mnt

March 2014 Page 72 of 89

Wl
|| ||

Lilbz% D3.2 Design and Implementation of the acoustic
' . processing unit
soé’o:?nzl. fn? ZmEDNmEGZG ! PrOjeCt Number: 284628

* Now the new firmware image can be extracted to the mounted system partition by for example
using a secure shell pipe from the BEMO server:

bemo # cat apu rootfs <timestamp>.tar.bz2 | ssh root@<apu-

”

ip-address> “tar -x -C /mnt -j -f -

* After unmount of the system partition, the boot loader entry has to be changed back to booting
into the normal (now updated) firmware. After that the APU can be rebooted:

root@apu:~# umount /mnt
root@apu:~# mount /dev/mmcblkOpl /mnt

root@apu:~# sed -i 's/uenvcmd=.*/uenvcmd=run secure boot/'
/mnt/uEnv.txt

root@apu:~# umount /mnt; reboot

6.3.7 Software update

Updating only parts of the APU software stack is simply done by replacing the individual binary files of
the components ready to be updated and restarting the service in question.

March 2014 Page 73 of 89

D3.2 Design and Implementation of the acoustic
processing unit

%0 SONTROL OF BUILDINGS Project Number: 284628

7 CONCLUSIONS

The purpose of this document was to describe the design and implementation of the APU hardware and
software platform as well as to document the results of corresponding technical tests and
measurements. Necessary requirements and specifications were given in various deliverables from
WP2 but mainly in Deliverable D2.3. Additional specifications and design details from Deliverables D3.1
and D4.1 had to be considered as well.

After giving an overview over the architecture and general information flow in the overall S4ECoB
system solution the architecture of the APU is discussed within this deliverable. Afterwards the APU
hardware platform consisting of a mainboard and an FPGA-based extension board is explained in
detail. Specifications of all relevant interfaces are listed in the document. FPGA firmware, housing
details and hardware cost aspects are addressed as well.

The APU software platform consisting of an embedded operating system, a signal processing
framework and a number of communication and synchronization components is introduced afterwards.
Software implementation aspects are discussed where necessary.

Furthermore, results of the technical system validation and corresponding tests, which had to be
performed to validate the defined requirements from Deliverable D2.3, are reported in this deliverable. A
sensor network consisting of up to 7 APUs and connected to an APU gateway was installed in IMMS’
labs and afterwards continuously tested over a period of more than three months. In summary, it is
documented that the APU fulfills all of the technical requirements necessary for the realization of the
S4ECoB demonstrator installations.

Finally, this deliverable contains the APU and occupancy sensor network installation and commissioning
manual targeted at installation staff and IT personnel working at the demo site facilities.

March 2014 Page 74 of 89

il
] |

i
f’fc‘: &:'!T D3.2 Design and Implementation of the acoustic
sS4 EIC oB processing unit
" evteo o uconcs Project Number: 284628
REFERENCES
[1] http://www.pandaboard.org/
2] S.W. Smith, The Scientist and Engineers Guide to Digital Signal Processing
[3] http://www.imms.de/en/competencies/system_design/results/base_box.html
[4] http://www.xilinx.com/products/silicon-devices/soc/zyng-7000/index.htm
(5] http://www.openembedded.org/
[6] Spartan-6 FPGA Configuration Users Guide UG380 (v2.5)
[7] http://www.armadeus.com/wiki/index.php?title=FPGA_loader
[8] http://www.sitime.com/support2/documents/AN10007-Jitter-and-measurement.pdf

March 2014 Page 75 of 89

processing unit

Project Number: 284628

v 7 £ g !
7V _Sas 300 0% VO @edrs A1
Sl i) | 110 19aus | TSGER0 WAL bI0Z €0 €1
e U] £6956 . “nquing
= - [o
= uStsopruarsds
] o vorswdid NdY Go0FrS AL

D3.2 Design and Implementation of the acoustic

EXPANSION BOARD SCHEMATICS

ANNEX A

30qPS BAOd
Addng 1amod

20qUIS URE 0]

UOIRIAURD 20)D)

20qYaS 00X
4ddns 1omog o £0PAWO) UOISURIXT PIROEPUST
T O I
Fudnosep pue Alddns waod YOI o1
£ ueq ‘20eLRMI H01) YOI 6
T ueq 200LIU DNID YOI 8
OIS IOd
T ueq 90819 1§y YOI L =
0Ueq SQHT YOI 9
QYIS0 YOI
AWDNADA0 YOI < ol
uoTe LU 01D ¥
20qYeg X1 o
sl © R 1y ay
PIEOqEpUE O} 30ELBI] z
2fed sup ‘[pasdo], T
uondunsa afeg
14 £ t4 T

CONTROL OF BUILDINGS

S4ECoB

SOUNDS FOR ENERGY

Page 76 of 89

Figure 44: Top-level view

March 2014

D3.2 Design and Implementation of the acoustic

processing unit

Project Number: 284628

S4ECoB

SOUNDS FOR ENERGY

CONTROL OF BUILDINGS

i4

bY S

OTPSWORT 3L

Gmudsd 2130 g | £E9V60 SUIL _ pI0CE0El AWa
S UL 6996

M | L mspiiong |1] maqung

L e pIoqEpuEd 01 0ujIAN] wIswdx NV GOOAPS ML
HwO Yo

180 JINJD LT

0S50 DD ST

£IAV DGO\

ININZ0OHT
AND

o
TO8 vas

aNo
Ay
7wy 40T

st

e
jc
fic | D0A

IITERS

w0

SAT V

01
U
o

A

'ANYd

Yas ozl €2
d0 OO

4

105 o/

T

SIAVY ONID

T AT,
9 D0dd ANOA
ANOd g 1IN
g LINI _
Juod ¥odd ’
T
1O OWID
080 DWJD
TV ONID
d0_ONID
A8 OWID
LIV OWNID

KT 01av OmaD

0
ASTVANYd— > AST00A
3

IS0 Ummmm
SOV O

Ju0d¥Odd

[¢0loan

A

fal

a1

jc o] < ONID >
am

VM

IN
[srolay
ONdD

Figure 45: Interface to mainboard

Page 77 of 89

March 2014

processing unit

Project Number: 284628

D3.2 Design and Implementation of the acoustic

v 7 B T T
bY was OIS X1 L)
STas Gmes | Tr30_Ehas | TrBYED WAL bIOCENEr e
[| £ 0o8Y T uoraany nquIny
| L= aEwwtﬁﬁm
[— VB SHPRUL P15 ,
L HqUO YO WP SV WIBLAT NdY FOFFS ML
awo aw
s H s
ora [nm_ saft™
LEQAHSIN 8
L
- s
ARy Tvay - = wa ¢
N Ivay — 20ATEA0d ’
= aoa £
Mo o N 6L
K TIOR ol 2
oM T IR
xBarvay 5 Q0 00A]
ﬂzoA 2 Qo 20A E—Peasoon
adopr L ay aw
I]
.S
(@T snivis > s @ LS o "ol | CTANS I
1aa1 —ed 1 sa a
_ Td a1
@1 sAivis LEQAHSINS 8
e
5
—Tvar 7] o i
s1vav e Lvav vay % % o . .
IV e 20ATZAOd G ’
G 2vay e = T £
PG ——— 3 ot N o
rvay s - YRS == Egsaa §
wav 2L R b
xBar vay 5 QN9 00A
nz.uA = a9 20A [P easoon
g o aw
a0t 125 H
IS s
Emn n@ nnmn
LEAAHSINS
L0y TIvaw
pafahiss & Ivav
SRRrA TR
EIRE EERS Ry
xBarvay
nzoA
||
awor o
v B Z :

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

Page 78 of 89

Figure 46: ASU interface

March 2014

processing unit

Project Number: 284628

D3.2 Design and Implementation of the acoustic

13 7 5 -
e 20QUIS W 0t
SWHI &muzd |_T1J0_pIaus | SE0SH0 AT PI0ZE0°ET 18
— UL §6956 - -
S | ooowassoqong | | worssa | S
[—_ uStsapRiLa1S: -
%sms%vw uoNgRUE 0] 'wiswdxE 0V EOFyS ML
ano
AN
== ador | ador
o5 1= P il e
[=1=1- TS 660 [15)
fab'e
2105 = £0MDS mmm m 11X Ww mwm
A0S L PEEn
TI1O0S = £ tops
01 > [y ol] 5 00MDS LOALTTH 2sd s ¢4
Tsd e Tsa
TATON { 20D §s |
TIDW <T 51—
TITON STDW T 103N sss = TESD [y e m.m_mm
] w00 000
ByvoD » o 88 o
WOND A\ T D)

=i B
AU00T (V00T |4Y00T 00T
LD | 9§D | $$O S0

SAEODA

S4ECoB

CONTROL OF BUILDINGS

SOUNDS FOR ENERGY

Page 79 of 89

Figure 47: Clock generation

March 2014

l %% l D3.2 Design and Implementation of the acoustic
S 4ECo B processing unit
so(l;lo'l‘l'?kil. OF buILoiNas | Project Number: 284628

F
IMMs
Size: A4

27

4
NS GmbH
Sysiemdesign
98693 Hmenau

['SheetS of 12| Germany

| Revision: 1

Time: 09:51:41

FPGA ovSchDoc

Title S4ECeB APU Extension, FPGA overview

Date: 13.03.2014

Number:

FPGA_GPMC SchDoc
FPGA_B3.SchDoc

Bank 2
Bank 3

r.SchDoc

FPGA _B1.SchDoc

3
E
2
1
3
&

Bank 0

Bank 1
FPGA Power
FPGA

Figure 48: FPGA overview

March 2014 Page 80 of 89

I
1
ECoB

SOUNDs FOR ENERGY
CONTROL OF BUILDINGS

|
i

ald
I||

D3.2 Design and Implementation of the acoustic
processing unit

Project Number: 284628

<« @ 5] a
<
=
4
&

o
5
3
g
z55 8
gm"is\
- §§§E§ S
3i8%
SRES
=
- |z
|3
g
s g
$|E
& |G
o
]
— 2l |y
gl [
= 2
b Yl
el If
B =5
g e
H |
S
|
gl .5
= | g[S
2| B8y
g | 2|8
Py P
0 JINVH
— 2 SESEeTas 2 —
________ o o 5
o o EizielEE | 10,2,9,99,99,% |2

§ | { ekl E EEIEQIEE‘EEIE 1

ﬂggo 0900 ngm‘slmlslw'glm‘ﬂ‘ 12,219,219,219, |8|%|8|%|8‘(‘;’]\3|al’8‘q

&'E&a&zmZm'Z'mZmz%E“ZMi%%%&E%é%%%é%é&é%é%%%%§

o ‘.-II.-II.-II—II—II—II-I‘A‘-II-II—II—II—IIA‘A"-'“-','-',-' i o o R R (e

5 99@
=l

- e e e o

FEPECTTETTTETTA <|° i m|i AT P R R

~ ~
glle oo alle &l
s 2lls glls @l
g g g g
] H H]
& & 5, Y
VT3 R
S B e z

GND
GND

GND
GND

Figure 49: FPGA LEDs

March 2014

Page 81 of 89

0 =
ST o
25 8
094
oL X
© n N
o 9 L
9 o
= 0O o
°cs §
S =
o

- — b
- o
g 3
@ e
e o
@

[=%

£

=}

c

©

c

Ry

»n

4]

o

N

o™

[m]

i4

QST ¥Odd 9

(27

POUNLI] £6956

(7 sssoussSeaquanyg
UBSUIISAS
HHO SYoNT

230 L1BS |

BTHS60 -Suny PI0T €0°ET D

T ooy |

“BquIny

T5[U8q 32013300 ISV YO "worusdxd ndy L

OPTEDSOT-SPXTSIOX

TASNE 1n0d_NbLT 01
TEIVAY dviT Ol
TNI9T 01

_ rdoTor

T IRIA_NEST OI

_ 1 desT 01
TSTOAUN _NZST 0L

Rt

EncaN

TIvavy

T TOATIN d2sT Ol

TATOM

NI TITOM

T £IDATN_NIST 01
_ T ZIOArn drsT_o1

z
Z
g
=
2
3
g

exs

NA TIVav

1_SOANTIN_ 40T 01
T_IIOATIN_N6vT 01

-

d @1

T 0TOATI d6vT Ol

[ziz pl

1IV1S 30d

T 60aTN_NSpT Ol

NG 30d

T80T DA dsT OI

it

TATOM

|

T TOAUN_ DT NLPT_OL

& GIDR

T_00ATIN_g_dMmd dibT OI

d ad1

T £0ATW_ & 304 NOYT_OI
T ZOQTN & S04 dorT Ol

L

T NSOQTUN_0Y_NSHT 01

NA 21

T SOQTIAL TV dShT 0L

TNA d

T_LOATN 2Y _NvbT 01

Z1V1S 3

T 90ATIN €Y dbbT OI

SlEIRIEIE)E

T_SOATA_pITOD_NSHT_OI

d
A0S O

:H

SATOM

T vOn:E\wv:U.O deyT O

NA €TOM

T INGTIN TAQEL 99109 _NeyT 01
T WANTW £T09 devT o1
T NSYO T 80D NIHT 01

[
I
|

udq oav

T NSYMTAL TAAI 63109 dT+T Ol
T 9V T OTITOD _NOYT 01

TSV TRITOD d0bT 01

T IJOTN N6£T OF

_ T EVIW de€T Ol
TNITO TN bY N8ET 01

T IDIN SV dseT 01

.8 5.8 8
e

i

noq Dav

NA €1vavy

T_IVIN 9V _N£ET 01
_TOVIN LY dLeT Ol
T_IVETN_8Y_N9¢T 01

§0 0av

vav
NA Lvay
AOM

NAHTOM,

XY IVaY

vay
NA 1vay
oM

NA ATOM

XD IVay

» £IVAY

* 21VaY 1vVay

» [1VaY
ivay

Figure 50: FPGA ASU interface

Page 82 of 89

4.0.8
i

TOVETN 6Y d9£T 01
T2V OTY NSET 01
T LYTAL TTY dSeT 01

£1VAY $2 O
€1V1S 30d ADS O

S4ECoB

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

T

TINVH

T 2VEIN 2TV Ny T 01
T AMIN TV dbeT 01

T bV BTV NE€T OF

T OTYIACSTY ds€T 01

T 6V 9TY NeeT 01
U8V LTV deeT OF

T 2TVTAL8TY NIET OI
IO 6TV dTET 01
_ U TIVIN 02V _NOST Ol
T 1ESTTA 12V d0§T 01
T_bTVIN 22V N62T 0T

T SIVIN €2V d6eT 01

T 43¥A 2V _NIT Ol
T2V dI'T o1

TN
RARERRARS!

am

€NA 30d

fiecyd

NBW a1 SNLV1S

jlecyy

a1 snivis

£IV1S

NI
s (15 303>

olo|o[o|o|o

e
— [1V1S

iscs
Rlic ok §

P

March 2014

t

284628

processing uni
Project Number:

D3.2 Design and Implementation of the acoustic

SOUNDS FOR ENERGY

C 7

OIS ONID Vodd)

Lwuisn 21J0 814§ _ ZI6SH0 AUy PIOTE0'ET d1ed
UK £6956 . N

Mﬂ“%ﬂ“ﬂaﬁw 2 {U8q '208)100 DINIO VOdI ‘woraedxg ndy AL

Ly k24
oed (12§

T = o195 380§
0T=W depaoaps

{_ONdD >

jAUl)

1 €0 ¢ 5
2l =

1
or T

0ot
699

ATOO

0ot
894

SAT VANV AT
g o0ud —LAMDL
9 D0¥d

anNoa
q 1IND

Jwoa"yodd

Juod” YO
(010K ———rpyorr—

= S0 DWdD
050 DONID

OPTEOSOT-SHATSID!

PIAY OO @ yied

T e
STV DNID ¢ 8y

o
1aY OWdD 2T

Za¥ _ONID —} T a3Td

DROMININ]
Z 22| ;M
gRA, lo!
= a
o {4}
g
i}
e

e
B
A8 %
-,
S

1

mlelinh

d5¥T OI

€av OWJD TC Eia
YAV ONID 71—t

— g 4Mad
0av DWdD ¢ ored L

VUl

Ty dTY DD
d0 DD

am T ONID G G

TV oD oW

DNdD

[stolav
DD

|

o)

JWNID 4 —1
8AY DNID 44 oS

&
B

1 S] O N P4 O 1O P

6AV ONdD T Say

[t

2

OIdV OO CC 4

(&S [= fa]

ONIO

T —VTd
z ﬂvw

ONEO

e —tew

SRR

=

Z_STA_0EATOD_NIET OI

T HIA TEATOD dIET OI

I

e o

ol nr e

OPZEOSOT-SPXTSION

by

Ll
A

Yzt T 9 S0dMD

TV OWdD by

ZIav OO TC

0 L
L99 Ly

e
€Tav OWNdD — by

L
o

SAT VANY

SAV DNID 7T 20
[

9V DNJO ey

A B S e 7

oo O aras T—baw

LAV ONID T —vuy

10D dIT OI

Figure 51: FPGA GPMC interface

Page 83 of 89

March 2014

t

284628

processing uni
Project Number:

D3.2 Design and Implementation of the acoustic

!
|

)

I
I
B

all
(=]
T
C

SOUNDS FOR ENERGY

(

17
S4ECo
CONTROL OF BUILDINGS

i4

vV e QS €4 vodd I
) Qa0 2130 _6waus | YT9560 BUAL __ pIOCE0El BRA
= TOUSUL 6986 T uoraasy _ mquinyg

| L= sspasiioquang

=3 MQMNE&% £ U0Q SO 20J YOI WOIIXA Y AL

OPTEDSOT-SHATSIOX

€ JINVH
o
A‘A‘nl

€ IAIA_NEBT
£ dE8T

€ _bTVEN_NSST

€ €TVEIN d§sT 01

_€ TIVEIN_NKST O]

€ 1ASTIEN dbs T
€ ZIVEN NEST Ol
£ DO dEST

€_6VEN NZST

€ SVEN dEST

€ PYEN NIST OI

£ 0TVEW dIST 01

€ ZVIEN NOST O
€_AMEN dOST O]
€_ZVEN_N6vT_Olf
_€ LYEW d6bT Ol
€_TVEEN N8bT O]
€ 0OVHEN d8T

€_TVEW NibT 01

_ € 0VEW debT ol
€ NATOEN N9PT

€ ADEN dovT

€ LAOSN_NSHT

€ EVEN dSHT

€ _9VEN_0TATOD_NbT 01

_ € SVEN 12IDD_dbbT 01
£ NSYOEN TAME 20 TOD_NebT Ol
€ NSVIEW €2 DD derT Ol
£ NATEN $TITOD_NebT Ol

I
&,
3|
I

11
ﬁiﬂg@cﬁﬁmw?ﬁ:mummo :-:(%Jnmuoo

£ATOS

i

(3§65

€ WANEW AL STDD_dZhT 01

TON

€ SOQEN 9TITOD_NIHT Ol

TON

€ pOAEW LA TDO_dTHT 01

108

Sl

€_LOQEN NI 01|

_ € 90aen dovT O]
€ NSOQTEN _N6€T 01

€ SOATEN d6eT

€ EOASIN_NSET ¢

€ TOALN d8ET

108

84
184
qs

€ 60N _N9ET O]
£ 80N 9T 01|

€_TTOaEN NSET

€ 0TOAEN dSeT

€ NSOANEIN_NPET ¢

Tsd

qs

€_SOANEN dbeT ¢
€_ETOaEN NEET

€ IO de€T O]

€_STOAEN _NeeT 01|

€ PTOAEIN dTeT ¢

z|z|x| ===

sd

HESD
Fiuo) " p0jD

B

FPGA clock interface

Figure 52

Page 84 of 89

March 2014

t

processing uni
: 284628

Project Number

D3.2 Design and Implementation of the acoustic

b 7 3 3 1
vV s 300S Wl Vodd N
STas G | 2130 0TS | GSECE0 BUIL___pTOZENEl B
— Uy £6936 ; i
S | commmoqogg | T W0 —
= m\wm“s M\ww Buydnodap pus 1308 YOLL 'WOIUIE DAY AL
ano ano
/\ ObTEDSOTSHITSI0N /\
ao
S @O ako i
2 aND aND
o] I AN T
A aND QND
I el I S
5 @O aNo
e ano
S aNo ano 2 OPLEDSOT-SHXTSION
S AN ano 53
awo aNo 543
T a0 aNo o
i] IO AN orq
o @ aNo =
T WD aND 2=
TH @ and 12—
Trr| N0 IO g
g] IO AN
oo | N0 AN
5
ano
OHTED S0T-SHX TS0 AN
€ 000A
£000A
000 uma m&#llm&?llm;?ll
INIDOA £ 000A S i i o
iR INDoA £000A {4 B)| U
T INIDOA £000A 43 $>ASO0A
| INDOA B
2N o INIDOA Z000A VB,G
Tor [o m&#l_lm&? ey | avoor
dd0sy | adosy | dosy | iy | Ay 5 -)
= o= == o= == o | WI9oA T099A Moy wa| wo| s w0
@0 wo| wo| ovd| sed o] WIO0A T 000A — —
o] 1ooA 77000A $EAT VANV PHOGHUIIUONT DDA AT
INDOA<H) 1aooa B
Xeur yunos T000A g
XOVOOA 1000A
=4 XnvooA TL0D0A [m&u\l_lm&# a8 ELI
XNYODA 10D0A
—2 xnvooA 1000A (H mmul—l %ul_l)
IR 8 xavon To00A 2
» £ xavooA _
S XnvioA 07000A frp VB,G
. XOVOOA 0.000A -
&E«I_lm&:\ U EDEI—I XOVODA 07000 wn m&?l_lm&? B_ELIH_ ot |
XNYODA 0_0D0A
seo| v ea| e P Xavoon 0-ooon [T mulﬁ :Gl—l 60| s©
XOVOOA<H {a X0V20A 000DA (i
vur oot X
Eur)
SASD0A
b * [14 7 1

CONTROL OF BUILDINGS

S4ECoB

SOUNDS FOR ENERGY

Page 85 of 89

Figure 53: FPGA power supply and decoupling

March 2014

D3.2 Design and Implementation of the acoustic

processing unit

Project Number: 284628

SOUNDS FOR ENERGY

CONTROL OF BUILDINGS

i4

vV s AP A0d S
G | 2130 TIPS | SSEEE0 BUIL___ bIoCEnEl KA
Shesat s £6956
s | e]
=3 mwm%x% WNoM F0d WOIRIKE 1Y AL
o
o ﬁm&mm%
DDA €30d 100 aN9
%Y an w01 vy
£1v1s o o E 001 b4 S ALTERY
g VIS 30 96TV 4 . A
P o Mo S T L TE 304
{15 F0d > T CTIvIs H0 B W v B3]
1o O 0 me B ASY D0A 0T
[N LIS 30 EERTe) T Jup 22!
TNE 30 1
04 EATDDAG——— +A
) SAEDOA
o
PR v wesLasa
ano _ b0 {RENELEIELUE §
00AZA0d = 100 aNo
BTl = awn 01T
e S
TR - N p— TIVIS 304
. 96TV an o —
1508b2I0aY Mo S T L 7RE 304
m ¢ I As0A © 01
wP —wa oa ol PNL pap—X ™ 70 T 64
oav > 1" —oq a Fs A
N 4 () > = 5 N £ACODAE 1
ALS s oav o] RS o WUET 3] FA£D0A
oav
ook e ¥zgLdsd Qz.umv
ano _ b0 EIDEIMELEIELLE §
20A”TE0d = 100 aNo
ao BT] awn 01 86
e
o0t NV 96TV - A PR TIvis 304
[—
Ason 190 T T 3n s N T L TRE 304
A|N(CCNA T J CACOOA mo 3 v [2s)
T T — A8Y D0A 0T
EAODAG———— A B baul
0

€AEODA

Figure 54: PoE circuit

Page 86 of 89

March 2014

processing unit

Project Number: 284628

13 _ £ ¢ 7 !
Py IS 20qQUIS BM0g 3
Shasal Cwd |_T1J0_ TIPS | OCTO01 WAL pIoCenel oKa
— s £6956 ; “nqun
s | iowwastioquagg | T W00 N
—|
=1 MWMMM»\WM fddns aod MorwRIT 1Y AL ano

D3.2 Design and Implementation of the acoustic

n—._‘_h.?_' K.SL'

YUy BAS'T
XNYOOA <

€AEDDA

ANVOOA VOdd

aNo

K, U1
K, A
aNo adoer oie9'T
w I_ —
T 089
L ey 234
610 o
£AEDDA <

VEBAL'E &

ano ASTO0A

T

T o
AS D0A = B on Aot —
e
8X

oLy

STO

MSTASTOON

aAND
ano
AD0T
AooT. [
g

CONTROL OF BUILDINGS

S4ECoB

0907
AT
L -
£SNS INOZS 7S | 2 W] By
] — a0
L I—
. oT W
st &
eRs A : VISTYINS
00 0gSL |) A
vizum 7y =
asng Qs
v Ty wA —r UA T
ASY DDA A *—
o
b < T T

SOUNDS FOR ENERGY

Page 87 of 89

Figure 55: Power supply

March 2014

| |
EJD,I | |||lu
ITTTTTI
S4ECo0B

SOUNDS FOR ENERGY
CONTROL OF BUILDINGS

D3.2 Design and Implementation of the acoustic

processing unit
Project Number: 284628

ANNEX B: APU PHYSICAL AND ELECTRICAL INSTALLATION MANUAL

Steps of the installation and commissioning process

* Mounting
¢ Electrical connections

* APU gateway installation (this has to be done before the functional test - see Section 6)

¢ Functional test

Mounting

There are two possible options for the APU fixing. The APU can directly screwed using the holes in the
housing. The second option is to use the delivered wall fastening clip, so the APU can be fixed without

removing the APU housing cover.

1
N
|
|
|

/

'{\\\\\\\
S

Figure 56: APU mounting

Interfaces
¢ ASU interface

Connect the Cat 5 ASU cables to the ASU interface connectors as shown in Figure 57.
ATTENTION: Do not connect a LAN network Ethernet cable to one of these ports!

March 2014

Page 88 of 89

| | | l
?? ?ff | D3.2 Design and Implementation of the acoustic

S4ECoOB processing unit
®GowthoL oF uloncs Project Number: 284628

CONTROL OF BUILDINGS

ASU ASU ASU
interface 1 interface 2 interface 3

Figure 57: ASU interface connectors of the APU

* LAN interface

Connect the Ethernet cable with APU LAN interface.

* Power supply

Connect the APU with the delivered 5V wall plug power supply.

ATTENTION: Connecting a supply with an output higher than +5Vdc could cause possible damage!

Figure 58: LAN interface and power supply connector of the APU

Functional test

The green power LED is turned on once the APU is supplied with power. If ASU and APU are
connected and both are turned on then the status LED of each ASU interface should show successful

data transfer.

March 2014 Page 89 of 89

